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Abstract
Federated learning (FL) enables several users to train machine-
learning models jointly without explicitly sharing data with one
another. This regime is particularly helpful in cases where keeping
the data private and secure is essential (e.g., medical records). How-
ever, recent work has shown that FL does not guarantee privacy—in
classification tasks, the training-data labels, and even the inputs,
may be reconstructed from information users share during training.

Using an analytic derivation, ourwork offers a new label-extraction
attack called Label Leakage from Bias Gradients (LLBG). Compared
to prior work, ours makes fewer assumptions and applies to a
broader range of classical and modern deep learning models, re-
gardless of their non-linear activation functions. Crucially, through
experiments with two datasets, ninemodel architectures, and awide
variety of attack scenarios (e.g., with and without defenses), we
found that LLBG outperformed prior attacks in almost all settings
explored, pushing the boundaries of label-extraction attacks.
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1 Introduction
Federated learning (FL) [26] has become a popular regime for col-
laboratively training machine-learning models. In FL, participants
can train models on private data without explicitly sharing raw
samples. For instance, in the common horizontal FL setting [42],
participants compute model updates locally, and only share these
updates with a server coordinating the training process, in lieu of
sharing actual training records.
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Figure 1: (a) We consider a horizontal FL setup where a pas-
sive adversary may observe user updates. (b) Specifically, the
adversary only requires the gradients w.r.t. the last layer’s
bias to launch attacks. (c) Reconstruction attacks leveraging
our LLBG attack (bottom) better resemble original images
(top) than prior attacks’ reconstructions (middle).

As the data itself remains on participants’ devices, FL is often
employed for trainingmodels on sensitive data. For instance, Google
makes famous use of FL by collaboratively training models for its
smart text-selection feature on user data [15]. Naturally, as users
may type sensitive information theymaywant to avoid sharingwith
unexpected parties, enhancing the privacy of FL protocols is of utter
importance. Consequently, parties interested in deploying FL are
increasingly interested in techniques for assessing and improving
the extent to which FL preserves privacy (e.g., [16]).

Indeed, although sensitive data is not explicitly shared in FL,
several attacks have demonstrated means to reconstruct inputs and
extract labels from user updates [12, 37, 43, 46, 51]. For instance,
some attacks pose input reconstruction as an optimization problem
to estimate users’ local private data based on the updates they send
and the model weights [12, 43, 51]. These attacks are particularly
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pernicious as they violate users’ implicit assumptions that their
data is protected because they only share updates. Other attacks
enable adversaries to extract labels [37, 46, 51]. Besides violating
users’ expectations about what data is being shared, extracted labels
may supply attackers with sensitive information about the user.
For example, if the training data consists of medical records, label
extraction may reveal how many patients included in the dataset
have a certain illness. Moreover, label extraction is also crucial for
input-reconstruction attacks (e.g., [12, 43]), as such attacks rely on
correct label extraction to operate successfully.

In this work, we study label-extraction attacks against FL when
used to train deep-learning-based classifiers. The general training
setup and threat model can be seen in Fig. 1(a). Based on a mathe-
matical analysis of model gradients, we characterize the connection
between user updates and the training-data labels. Equipped with
this understanding, we develop the Label Leakage from Bias Gra-
dients (LLBG) attack. Compared to previous attacks derived via
related techniques [37], LLBG makes fewer assumptions about the
models. Accordingly, LLBG applies in a wider range of settings,
against a wider range of classical and modern model architectures.

Moreover, the analysis enabling the attack is less tightly coupled
to the model’s internal activations during training, leading to more
precise estimates of unknown variables and higher attack success
rates (ASRs)—i.e., higher fractions of correctly extracted labels. We
extensively evaluate LLBG, using two datasets (CIFAR100 [21] and
ImageNet [31]) and nine model architectures, and compare it with
previous attacks. When tested in variety of settings—with trained
and untrained models, against different FL meta-algorithms (i.e.,
FedAVG and FedSGD), with different activations, among others—
LLBG consistently attained the highest ASRs, with a few exceptions.

In a nutshell, our main contributions are:
(1) We analyze models’ gradients and derive a simple relation

between them and training samples’ labels (§4).
(2) Leveraging the analysis, we propose LLBG—a general label-

extraction attack, which relies on less assumptions compared
to previous work, and therefore is applicable to more settings
(§5). Notably, LLBG requires only access to the gradient of
the last layer’s bias (Fig. 1(b)).

(3) We evaluated LLBG extensively, contrasting it with prior
attacks, and found it attains state-of-the-art results in almost
all cases explored, and succeeds in new settings where pre-
vious attacks fail (§6). We also find correct label extraction
crucial for high-quality data reconstruction (§6.7, Fig. 1(c)).

(4) We experimented with different defenses, testing their ef-
ficacy against prior attacks and ours, finding LLBG more
robust against state-of-the-art defenses (§6.8). However, a
simple, new defense we propose succeeds to deter LLBG.

Before delving into the contributions, we next present related
work and background (§2) and specify the threat model (§3).

2 Background and Related Work
2.1 Federated Learning (FL)
FL enables various clients to jointly train machine-learning models
in a distributed manner, while avoiding the need to share their raw
data [26]. In its most common regime, called horizontal FL [26, 40],
FL starts with a model of a particular architecture with randomly

initialized weights, and proceeds iteratively, performing the follow-
ing actions in each round:

(1) The server selects a set of clients to participate in the round,
and sends them an updated copy of the model;

(2) Selected clients run an optimization algorithm, each using
their private data, yielding updates (i.e., gradients) of the
model parameters;

(3) The selected clients send the updates to the server; and
(4) The server aggregates the updates received and updates its

copy of model.

On top of different choices of optimization algorithm for step 2,
two different meta-algorithms are commonly used for the user
optimization—FedSGD and FedAVG. In the FedSGD algorithm, the
user only performs a single iteration of optimization on the data,
while in the FedAVG algorithm several iterations are performed
consecutively (possibly on different data in each iteration) before
updates are aggregated and sent to the server. In this work, we focus
our experiments (§6) on FedAVG, as it is more general (FedSGD is
a specific case where the number of local steps is one), communica-
tion efficient, and results in more accurate models [26].

Other regimes than horizontal FL exist [40], including, but not
limited to, vertical FL, where clients have different feature sets
pertaining to the same samples, and federated transfer learning
where clients have different features belonging to different samples.
Our work targets horizontal FL (referred to as FL from here onwards,
for simplicity), as it is more commonly encountered in practice [40]
and the literature (e.g., [12, 37, 43, 46, 51]).

2.2 Attacking FL
Attacks with varied goals have been proposed against FL. Some
privacy attacks seek to guess properties of client data (e.g., whether
certain records are used for training) [27], while others attempt
to reconstruct client inputs [12, 43, 51]. In contrast, attacks on
FL’s integrity aim to prevent or delay the convergence of training
(e.g., [3, 4, 13]), or even to instill backdoors in the model that have
little-to-no effect on its performance on benign inputs, but lead to
predictable behavior (e.g., misclassification) upon the introduction
of minimal triggers to inputs during inference (e.g., [2, 3]). Naturally,
test-time attacks against machine learning (e.g., [6, 32, 34]) not
specifically designed for FL may also be applied against models
trained via FL.

Differently from these lines of work, we primarily study label
extraction from updates shared by clients [37, 46, 51]. The most
related work to ours is that of Wainakh et al. [37]. They introduced
the Label Leakage from Gradients (LLG) attack for label reconstruc-
tion, surpassing previous attack’s performance by a wide margin.
LLG is based on a theoretical analysis of model gradients extending
that of Zhao et al. [46], and is guaranteed to accurately extract
labels when the training batch-size equals one.

In this setting, assuming non-negative activation functions (e.g.,
ReLU), LLG works by returning the index of the column of model’s
last linear layer’s weight gradients (∇𝑊𝐿 ; sent by clients) with neg-
ative values. The assumption of non-negative activation is crucial
for LLG, as it guarantees that only classes included in the batch
have negative values in their respective columns of ∇𝑊𝐿 . However,
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this assumption prevents LLG from applying to popular architec-
tures with possibly negative activations (e.g., Vision Transform-
ers [9] with GELUs [18] or Multi-Layer Perceptrons with Tanh or
LeakyReLU activations).

LLG was also applied to batch sizes >1. For batches where each
class appears at most once, LLG is guaranteed to attain an ASR
of 100%. Several input-reconstruction attacks rely on this fact to
justify the assumption that attackers have the true labels before
initiating input reconstruction [12, 41, 43]. However, in realistic
settings, client batches often have several samples of the same
label [19, 26]. In such settings, LLG does not attain perfect ASR,
leaving significant room for improvement. In this work, we simplify
the theoretical analysis employed by LLG and relax its assumptions
(§4), leading to a more general attack with higher ASRs (§5–6).

2.3 Defending FL
Various privacy-enhancing methods for FL have been proposed in
recent years. Offering an elegant, attack-agnostic privacy defini-
tion seeking to limit records’ impact on computation, differential
privacy (DP) has become a gold-standard definition of privacy [10].
Accordingly, mechanisms have been developed for attaining DP in
deep learning and FL [1, 28]. To achieve DP in FL each client clips
and introduces noise to updates, before sharing them with servers.
Here, clipping consists of normalizing vectors to an 𝐿2-norm of 𝜌
if their norm is higher, while noise is sampled i.i.d. for each coordi-
nate from a Gaussian distribution with mean 𝜇=0 and a standard
deviation of 𝜎 . As this defense is often found effective (e.g., [8, 50]),
we evaluate our attacks against it (§6.8).

Another heuristic-based defense we experiment with is (lossy)
gradient compression [30, 49]. Here, coordinates of the updates with
absolute values below a certain threshold are replaced with zero,
making the updates sparse. This method has also been suggested
to make communication in FL more efficient, and has been demon-
strated to have little-to-no harm on the trained model’s accuracy
as long as the threshold is sufficiently large [24].

Previous work [37, 51] has shown that both label- and data-
reconstruction attacks in FL are less effective when the batch size
of the training data is increased. Therefore, increasing the training
batch size (when possible, depending on the amount of data users
have) may also be considered as a defense. We also experiment with
this defense (§6.3).

Adopting on secure multiparty computation methods, secure
aggregation enables the clients to aggregate their updates in a
privacy-preserving manner [5]. In return, secure aggregation was
deployed to enable computing updates for larger batch sizes (across
clients), thus hindering attack success, and to prevent adversaries
from tying updates and extracted labels (or reconstructed inputs)
to specific clients. Unfortunately, however, secure aggregation may
render it more challenging to defend against other categories of
attacks, such as ones backdooring models [45].

3 Threat Model
This work studies label-extraction attacks against horizontal FL,
where clients jointly train a classifier, aiming to minimize the cross-
entropy loss on their data. We assume that the model is a neural
network with a linear layer as its last layer. This is a general setting

which applies to different domains and data formats (images, text
etc.). We assume a realistic, constrained adversary that can only
obtain user updates, and not the data or other statistics about it.

Unlike active, malicious adversaries [47, 48], ours cannot manip-
ulate the model weights or deviate from the FL protocol to learn
more information about the user data. If the attacker controls a
client or the server, they must update models according to user up-
dates, and they cannot independently influence the model weights,
deviating from the FL protocol. Said differently, we study an honest-
but-curious adversary, which could be an eavesdropper on the
communication between clients and the server, or even a legitimate
participant in the FL protocol (e.g., the server itself) seeking to learn
as much information as possible about other participants [29].

For instance, the adversary could be a company running a stan-
dard FL protocol with its users and attempting to learn sensitive
information about the data (Fig. 1(a)). The adversary may have
access to auxiliary data [32] they could run through the model
to assess how updates behave for certain samples and conduct
more powerful attacks. We consider this threat in one version of
our attack (LLBGaux), but primarily focus on adversaries without
auxiliary data.

Our attack is general and does not make assumptions about
the data distribution. However, because class imbalance is rather
common in FL—in fact, FL is primarily useful because individual
clients may not have sufficiently representative data for training
well-performing models [26]—we mainly evaluate attacks consider-
ing an uneven distribution of classes between clients. Specifically,
similar to prior work [26, 37], we assume that the labels of each
client data are unbalanced such that half of the client’s samples are
from one class, a quarter are from another class, and the last quar-
ter are chosen randomly i.i.d. [37]. However, we also demonstrate
our attack’s effectiveness when samples are chosen uniformly at
random across classes (§6.4).

4 Gradient Analysis
We now present the analysis informing LLBG by tying the gra-
dients computed by clients to the samples’ labels. We assume a
general setting where FL is used to train a neural network for clas-
sification, with a linear layer as its last layer, while employing the
cross-entropy loss. As opposed to Wainakh et al. [37], we do not
assume the non-linear activations are non-negative. This assump-
tion is rather restricting when using classical architectures (e.g.
Multi-Layered Perceptron with Tanh or LeakyReLU activation),
and does not hold for certain modern architectures (e.g. Vision
Transformer [9] with GELU [18] activations).

As the loss we analyze is the most commonly used, the follow-
ing analysis applies to most classification models published and
researched. For a model𝑀 , a multidimensional input 𝑥 , and a label
index 𝑐 ∈ {1, ..., 𝑛}, the cross-entropy loss is defined as:

𝐿𝑀 (𝑥, 𝑐) = − ln
exp (𝑦𝑐 )∑
𝑗 exp

(
𝑦 𝑗

)
where 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑛) are the model’s logits.

Next, we will analyze the model gradients w.r.t. the last layer’s
bias ∇𝑏𝐿 , denoted as 𝛽 , demonstrating their connection with the
labels. To this end, we first analyze the gradient of the loss w.r.t. the
model’s output, ∇𝑦. Given a batch 𝑋 = (𝑥1, ..., 𝑥𝐵) with 𝐵 samples
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and labels 𝐶 = (𝑐1, ..., 𝑐𝐵), training typically aims to decrease the
average cross-entropy loss:

𝐿𝑀 (𝑋,𝐶) = −
1
𝐵

𝐵∑︁
𝑘=1

ln
exp

(
𝑦𝑐𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

)
where 𝑦 𝑗𝑘 is the 𝑗 ’th logit coordinate when 𝑥𝑘 is given as input.

We denote the gradient of the loss w.r.t. a single output coordi-
nate 𝑦𝑖 by 𝑑𝑖 :

𝑑𝑖 :=
𝜕𝐿𝑀 (𝑋,𝐶)

𝜕𝑦𝑖
=

− 1
𝐵

𝐵∑︁
𝑘=1

(
𝜕 ln exp

(
𝑦𝑐𝑘

)
𝜕𝑦𝑖

−
𝜕 ln

∑
𝑗 exp

(
𝑦 𝑗𝑘

)
𝜕𝑦𝑖

)
= − 1

𝐵

𝐵∑︁
𝑘=1

(
I{𝑖 = 𝑐𝑘 } −

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

) )
where I{𝛼 = 𝛽} = 1 if 𝛼 = 𝛽 , and = 0, otherwise. Opening paren-
theses, we get:

𝑑𝑖 = −
1
𝐵

𝐵∑︁
𝑘=1
I{𝑖 = 𝑐𝑘 } +

1
𝐵

𝐵∑︁
𝑘=1

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

)
= −𝜆𝑖

𝐵
+ 1
𝐵

𝐵∑︁
𝑘=1

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

) (1)

where 𝜆𝑖 is the number of samples in the training batch with label
𝑖 . Notice that the average probability assigned to class 𝑖 (the second
term, on the right hand side of (1)) lays ∈ [0, 1]. When 𝑖 ∉ 𝐶 ,
meaning no sample in the training batch has label 𝑖 , we have 𝜆𝑖 = 0
and thus 𝑑𝑖 ∈ [0, 1]. On the other hand, if 𝑖 ∈ 𝐶 , we have:

−𝜆𝑖
𝐵
≤ 𝑑𝑖 ≤ 1 − 𝜆𝑖

𝐵

Hence, if the value of 𝑑𝑖 is negative, we can conclude with certainty
that 𝑖 ∈ 𝐶 . Notice, however, that the opposite is not true: if 𝑖 ∈ 𝐶 it
is not guaranteed that 𝑑𝑖 < 0, since the second term (on the right
hand side) of (1) may be larger in absolute value than the first.

Although the gradient 𝑑 w.r.t. the outputs 𝑦 is not usually shared
explicitly in FL, the gradients of the weights and biases of the linear
layers of the model are. We now analyze the gradient of the bias of
the last linear layer, denoted by 𝛽 . From the chain rule we have:

𝛽𝑖 := ∇𝑏𝑖𝐿 =
𝜕𝐿 (𝑋,𝐶)

𝜕𝑏𝑖
𝐿

=
𝜕𝐿 (𝑋,𝐶)

𝜕𝑦𝑖
· 𝜕𝑦𝑖
𝜕𝑏𝑖

𝐿

= 𝑑𝑖 ·
𝜕

((
𝑊 𝑖

𝐿

)𝑇
𝑎𝐿−1 + 𝑏𝑖𝐿

)
𝜕𝑏𝑖

𝐿

= 𝑑𝑖 · 1 = 𝑑𝑖 (2)

where𝑊 𝑖
𝐿
, 𝑏𝑖

𝐿
are the weights connected to the 𝑖𝑡ℎ output (which

represents the 𝑖𝑡ℎ class) and the corresponding bias term, 𝑎𝐿−1 is
the output of the second-to-last layer and 𝑦𝑖 =𝑊 𝑖

𝐿

𝑇
𝑎𝐿−1 + 𝑏𝑖𝐿 from

the definition of a linear layer. Combining (1) with (2) we get:

𝛽𝑖 = 𝑑𝑖 = −
𝜆𝑖

𝐵
+ 1
𝐵

𝐵∑︁
𝑘=1

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

) (3)

UntrainedModels Asmentioned byWainakh et al. [37], themagni-
tude of the second term in Eqn. 3—the average probability assigned
to class 𝑖 by the model over the batch—depends on the model’s

confidence in the prediction, which is usually dependent on the
training stage. For randomly initialized and untrained models, the
output probability distribution should be close to uniform, and in
that case we have:

1
𝐵

𝐵∑︁
𝑘=1

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

) ≈ 1
𝐵

𝐵∑︁
𝑘=1

1
𝑛
=

1
𝑛

For large values of𝑛 (e.g., 100 in CIFAR100 [21] or 1,000 in ImageNet
[31], respectively), this term is close to 0 and we have:

𝛽𝑖 ≈ −
𝜆𝑖

𝐵

Trained Models For a trained model, we can usually assume that
its accuracy is rather high, meaning for most samples (𝑥, 𝑐) in the
dataset:

∀𝑤 ≠ 𝑐.
exp𝑦𝑐∑
𝑗 exp𝑦 𝑗

>
exp𝑦𝑤∑
𝑗 exp𝑦 𝑗

Applying this to the second term of (3), we assume that the expres-
sions within the sum that contribute most are those corresponding
to batch indices where the label of the sample is 𝑖 (the coordinate
of the gradient analyzed in that equation). Therefore:

𝛽𝑖 ≈ −
𝜆𝑖

𝐵
+ 1
𝐵

∑︁
𝑘 ;𝑐𝑘=𝑖

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

)
Examining the sum on the right we get:∑︁

𝑘 ;𝑐𝑘=𝑖

exp
(
𝑦𝑖𝑘

)∑
𝑗 exp

(
𝑦 𝑗𝑘

) =
∑︁

𝑘 ;𝑐𝑘=𝑖
𝑝
(𝑘)
𝑖

where 𝑝 (𝑘)
𝑖

is the estimated probability of class 𝑖 given sample 𝑥𝑘 as
input. Adversaries do not know 𝑝

(𝑘)
𝑖

, as it is not shared by clients
during training. However, they may approximate it as the average
confidence level of the model when correctly predicting class 𝑖 .
Denoting this average as 𝑣𝑖 , and using the fact that there are exactly
𝜆𝑖 samples in the batch with label 𝑖 , we can approximate:

𝛽𝑖 ≈ −
𝜆𝑖

𝐵
+ 1
𝐵

∑︁
𝑘 ;𝑐𝑘=𝑖

𝑣𝑖 = −
𝜆𝑖

𝐵
+ 1
𝐵
(𝜆𝑖 · 𝑣𝑖 )

= −𝜆𝑖
𝐵
· (1 − 𝑣𝑖 ) (4)

We offer means to estimate the vector 𝑣 in §5.2 to enable attacks
against trained models. This approximation is also valid for un-
trained models, however in this case 𝑣𝑖 ≈ 1

𝑛 and so its contribution
to this equation is negligible when 𝑛 is large.
Comparison With Prior Work In past work, Wainakh et al. [37]
proposed an analysis similar to ours, on the gradient of the weights
of the last linear layer (instead of the gradient of the bias). They
derived an equation resembling Eqn. 2 that relates weight gradients
to the gradient of the output:

∇𝑊 𝑖
𝐿 = 𝑑𝑖 · 𝑎𝐿−1 (5)

where ∇𝑊 𝑖
𝐿
is the 𝑖’th column of the gradient of the last layer’s

weights, 𝑎𝐿−1 is the output of the previous layer, and 𝑑 is the gra-
dient of the output (as before). They suggested that, assuming
non-negative activations (i.e., if 𝑎𝐿−1 only has non-negative values),
negative weight gradients correspond to labels used at least once
in updates. Accordingly, in Wainakh et al.’s analysis, the relation
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between the weight gradients and the training labels has another
multiplicative factor, which may be distributed differently across
different models, potentially obfuscating it compared to our analy-
sis. Furthermore, if the activation function is not non-negative, the
sign of the weights gradient ∇𝑊𝐿 may be different than 𝑑𝑖 , thus
hindering label extraction. In contrast, our analysis enables our
attack to be deployed successfully against models with different
activation functions at the last layer, including ones which could
be negative (e.g., LeakyReLU, Tanh, GELU).

FedSGD vs. FedAVG It is important to note that our analysis ap-
plies for cases where clients only take a single local step and send
the gradients to the server (i.e. FedSGD). In cases where clients
take several local steps, updating their local model after each (i.e.
FedAVG), the updates shared are the difference between weights
before and after running all local steps. In such cases, our analy-
sis does not strictly hold. Still, even in these settings we find that
the analysis provides a good approximation for gradient behavior
when the learning rate is sufficiently small, as the model does not
drastically change between steps. This is also evident from the high
ASRs attained against FedAVG (§6).

5 Technical Approach
Using the observations from §4, we now define the LLBG attack.
The attack has two variants, applicable for models at different
stages of training. We first describe our attack against a randomly
initialized, untrained model (§5.1). Subsequently, we present an
attack well-suited for trained models that achieve high accuracy
on the classification task (§5.2).

5.1 Untrained Models
In this scenario we assume the only information the attacker re-
ceives is the update of the model parameters 𝜃 w.r.t. a training
batch, ∇𝜃 . In fact, the only part of the update needed for our attack
is the gradient of the last linear layer’s bias (see Fig. 1(b)), ∇𝑏𝐿 ,
which we denote as 𝛽 . From the analysis in §4 we know that every
negative coordinate in the vector 𝛽 indicates the matching label
exists at least once in the batch. We also know that in this case the
contribution of sample 𝑥 with label 𝑐 in a batch to 𝛽 is ≈ − 1

𝐵
· 𝑒𝑐 ,

where 𝑒𝑖 is the one-hot vector with 1 in its 𝑖’th coordinate and 0
in the rest. We refer to this quantity as impact, and denote it by𝑚.
From these observations we derive a two-stage attack (see Alg. 1).

In the first stage of the attack, labels guaranteed to be in the
training batch (labels corresponding to negative indices in the gra-
dient) are added to the reconstruction. After label 𝑖 is added to the
reconstruction, as preparation for the second stage, its contribution
to the gradient is corrected, by reducing the 𝑖th coordinate of the
bias gradient by the impact𝑚.

In the second stage, we rely on the corrections done in the first
stage being close to accurate, and add the label corresponding to
the negative index of the bias gradient with the highest absolute
value (or the positive with smallest value if one does not exist). In
this stage we correct for each reconstructed label by reducing𝑚
from the corresponding coordinate of the bias gradient as well. The
second stage is run repeatedly until 𝐵 samples are reconstructed.

Algorithm 1: Label Leakage from Bias Gradient (LLBG)
attack against untrained models
Input: 𝛽 = ∇𝑏𝐿 , batch size 𝐵

1 𝑚 ← − 1
𝐵
;

2 𝐶 ′ ← [ ] ; // Initialize labels list

3 for 𝑖 ← 1 to 𝑛 do // Guaranteed labels
4 if 𝛽𝑖 < 0 then
5 𝐶 ′ ← 𝐶 ′ + [𝑖];
6 𝛽𝑖 ← 𝛽𝑖 −𝑚 ; // Sample impact

7 while |𝐶 ′ | < 𝐵 do // Heuristic for rest
8 𝑙 ← arg min{𝛽};
9 𝐶 ′ ← 𝐶 ′ + [𝑙];

10 𝛽𝑙 ← 𝛽𝑙 −𝑚;
11 return 𝐶 ′

5.2 Trained Models
The analysis in §4 showed that the contribution of each sample (𝑥, 𝑐)
to 𝛽𝑐 is ≈ − 1

𝐵
· (1 − 𝑣𝑐 ) (Eqn. 4), where 𝑣𝑐 is the average probability

given by the model when correctly predicting a sample is of class
𝑐 . Accordingly, while Alg. 1 can be applied against trained models,
the approximation of 𝑣𝑐 ≈ 1

𝑛 ≈ 0 it relies on would be invalid. Thus,
to improve ASRs against trained models, it would be helpful to
accurately approximate 𝑣𝑐 .

In some cases, 𝑣 may be publicly available, alongside models’
architectures and weights. For instance, if confidence calibration
is applied to the model [14]—i.e., confidence is adjusted such that
estimated probability also corresponds to accuracy—𝑣 could be
derived from any public information about model accuracy.

If 𝑣 is not publicly available, adversaries would need to find alter-
native ways to approximate it. We offer two approaches differing
in their assumptions concerning the attacker’s knowledge for do-
ing so. The first, used in an attack variant we denote by LLBGaux,
assumes the availability of auxiliary data. The adversary passes the
data through the model, averaging the output probabilities across
samples, to estimate the average confidence 𝑣𝑖 for each class.

In the second approach, used in attack variant denoted by LLBG𝛾 ,
𝑣 is set to a constant 𝛾 for all classes. While we use this approach
as part of an ablation to measure the utility of approximating 𝑣 , it
may be used by an attacker as it only requires an estimate of the
overall model confidence—a single statistic instead of 𝑛 statistics
(one per each class in the dataset).

Given the estimate of 𝑣 for different classes, we derive the attack
against trained models (see Alg. 2). The difference from the attack
outlined in Alg. 1 is in Lines 6 and 10, where we take the model
confidence into account when we calculate the contribution of each
sample to the gradient.

6 Evaluation
We extensively evaluated the effectiveness of LLBG and compared
it to prior attacks in different settings, including ones previously
explored (e.g., [37]), and new ones made possible by our analysis.
We started by considering a basic setting, with several untrained
models of varied complexities (§6.2); we then explored the effects of
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Algorithm 2: LLBG attack against Trained Models
Input: 𝛽 = ∇𝑏𝐿 , batch size 𝐵, average confidence of model

per class 𝑣 = (𝑣1, . . . , 𝑣𝑛)
1 𝑚 ← − 1

𝐵
;

2 𝐶 ′ ← [ ] ; // Initialize labels list

3 for 𝑖 ← 1 to 𝑛 do // Guaranteed labels
4 if 𝛽𝑖 < 0 then
5 𝐶 ′ ← 𝐶 ′ + [𝑖];
6 𝛽𝑖 ← 𝛽𝑖 −𝑚 · (1 − 𝑣𝑖 ) ; // Sample impact

7 while |𝐶 ′ | < 𝐵 do // Heuristic for rest
8 𝑙 ← arg min{𝛽};
9 𝐶 ′ ← 𝐶 ′ + [𝑙];

10 𝛽𝑙 ← 𝛽𝑙 −𝑚 · (1 − 𝑣𝑙 )
11 return 𝐶 ′

increasing batch size (§6.3); we also considered different label dis-
tributions (§6.4); we then tested attacks with trained models (§6.5);
we further assessed attacks with different non-linear activation
functions, including ones with negative activations (§6.6); we also
measured the extent to which more accurate label reconstruction
improves existing input-reconstruction attacks (§6.7); lastly, we
tested different defenses to mitigate the attacks (§6.8). We provide
the code for our attack and all experiments reported in a GitHub
repository [11].

6.1 Experimental Setup

Data and Models We evaluated attacks with the CIFAR100 [21]
and ImageNet [31] datasets, two standard image datasets com-
monly used in the field [12, 37, 46, 51], containing 100 and 1,000
classes, respectively. We also attacked models of varying complex-
ities: For CIFAR100, we used a small MLP with three hidden lay-
ers and ReLU activation, a small CNN with four convolutional lay-
ers and ReLU activation, VGG19 [33] and ResNet32 [20], and, for
ImageNet, we used VGG19, ResNet50 [17], EfficientNetB0 [36],
MNasNet-A1 [35], ShuffleNetV2 [25], and ViT [9].

Meta-Algorithms and Data Distribution In all experiments, we
report results with FedAVG as the FL meta-optimization method,
as it is more commonly used due to its performance and communi-
cation efficiency. We exclude FedSGD results for brevity, as they
were consistent with FedAVG’s. Unless otherwise mentioned, we
considered unbalanced client batches, as defined by Wainakh et
el. [37] and explained in §3. Namely, 1

2 of the labels in each batch
wre of a random class 𝑎, another 1

4 were of a random class 𝑏, and
the rest were each chosen at random, i.i.d. from all classes. The
batch size, unless otherwise reported, was 𝐵=128.

Metrics We assessed attacks via attack success rates (ASRs)—i.e.,
the percentage of labels correctly extracted from a single batch by
attacks. To reliably measure ASRs, we repeated each experiment 100
times and reported the average ± the standard deviation of the ASR
across runs. For each attack we considered, we ran experiments
with the exact same 100 batches. When presenting results, we mark
the best result for each experiment in bold.

Baseline Attack The baseline for our attack is LLG, the state-of-
the-art attack we aim to improve upon [37]. We tested the LLG
variant which assumes no auxiliary dataset, similarly to our LLBG
attack. As aforementioned, LLG bears several similarities to LLBG,
differing in two primary ways. First, instead of approximating 𝛽 to
extract labels, LLG leverages

𝐺 =

(
®1
)𝑇
· ∇𝑊𝐿

Where ®1 is a vector of length 𝑛 with 1 in every coordinate, and ∇𝑊𝐿

are the gradients of the last linear layer’s weights. The summation
of each column of the weights gradient results in a single value for
each label index. Assuming non-negative activations, if a label is
present in the batch, the entire corresponding column would be
negative, resulting in a negative sum, and enabling label extraction.

Second, instead of setting𝑚 = − 1
𝐵
(as determined by our closed-

form analysis), LLG’s impact parameter is estimated empirically:

𝑚 =
1
𝐵

∑︁
𝑖;𝐺𝑖<0

𝐺𝑖

(
1 + 1

𝑛

)
Namely,𝑚 is approximated by summing all negative indices and
dividing by the batch size. The multiplicative factor is meant to
correct for positive terms added by other labels, and was empirically
found to boost LLG’s success.
Ablation Attack To evaluate the contribution of each of the dif-
ferences between out attack and the baseline, we define an attack
called Empirical Bias Impact (EBI) that, similarly to LLBG, exploits
bias gradients to extract labels, but more closely resembles LLG by
estimating the impact empirically. Particularly, EBI runs according
to Alg. 1, but uses the following term to estimate the impact:

𝑚 =
1
𝐵

∑︁
𝑖;𝛽𝑖<0

𝛽𝑖 (6)

6.2 Attacking Untrained Models
In the most basic setting, we tested label reconstruction on un-
trained CIFAR100 models; Tab. 1 reports the results. In almost all
cases, LLBG achieved near-perfect ASR, bypassing the baselines’
ASRs by ∼20%. An exception was ResNet32, for which all attacks
attained lower ASRs than against other models, and LLBG’s ASR
fell >15% behind the baselines.

We discovered the reason for LLBG’s failure against ResNet32
can be explained by the high probability assigned to (incorrect)
classes, even when untrained (∼0.89 entropy for ResNet32 com-
pared to ∼6.64 for other architectures), violating LLBG’s assump-
tion that untrained models assign roughly uniform probability to
all labels (§4). Similar findings held when attacking an untrained
ResNet50 model on ImageNet (Tab. 2). In this case, however, the
difference in ASR between attacks was smaller for most models.
In contrast, for EfficientNetB0, LLG achieved an extremely low
ASR, compared to the near-perfect success of LLBG and EBI.

6.3 Varying Batch Size (B)
We also examined how varying the batch size (𝐵) affected ASRs.
Here, we experimented on CIFAR100 with the VGG19 architecture,
considering 𝐵 ∈ {256, 512, 1024}, in addition to 𝐵=128 previously
reported in Tab. 1. The results are reported in Tab. 3. LLBG’s ASRs
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Table 1: ASRs vs. untrained models on CIFAR100.

Model LLG EBI LLBG

MLP 81.93 ± 1.94 79.11 ± 1.38 99.56 ± 0.39
CNN 81.24 ± 1.91 78.93 ± 1.40 99.58 ± 0.39

VGG19 81.57 ± 1.78 78.96 ± 1.38 99.62 ± 0.39
ResNet32 56.32 ± 8.24 50.40 ± 9.90 33.01 ± 3.79

Table 2: ASRs vs. untrained models on ImageNet.

Model LLG EBI LLBG

VGG19 97.92 ± 1.22 99.16 ± 0.59 99.86 ± 0.30
ResNet50 62.90 ± 5.86 55.88 ± 7.45 44.91 ± 4.08

EfficientNetB0 16.45 ± 3.26 99.17 ± 0.59 99.86 ± 0.30
MNasNet-A1 91.11 ± 4.07 99.17 ± 0.59 99.86 ± 0.30
ShuffleNetV2 91.02 ± 5.11 99.16 ± 0.61 99.86 ± 0.30

Table 3: ASRs vs. untrained VGG19 on CIFAR100, with varied
batch sizes.

Batch Size LLG EBI LLBG

128 81.57 ± 1.78 78.96 ± 1.38 99.62 ± 0.39
256 69.03 ± 1.61 68.00 ± 1.11 99.36 ± 0.24
512 49.07 ± 2.25 47.15 ± 1.65 99.55 ± 0.13
1024 39.25 ± 2.79 37.35 ± 2.27 99.97 ± 0.04

Table 4: ASRs vs. untrainedmodels on CIFAR100with uniform
labels.

Model LLG EBI LLBG

MLP 74.75 ± 3.25 80.54 ± 3.00 100.00 ± 0.00
CNN 76.56 ± 3.02 80.72 ± 3.43 100.00 ± 0.00
VGG19 75.37 ± 3.12 79.94 ± 3.74 100.00 ± 0.00

ResNet32 71.33 ± 3.29 67.39 ± 3.81 66.77 ± 3.53

remained almost constant (even rising slightly) when increasing 𝐵,
while other attacks’ ASRs dropped significantly. Said differently, the
results suggest LLBG were less effected by the batch size increase
compared to the other attacks.

6.4 Attacks With Random Label Distribution
We also tested attacks with randomly (i.i.d.) distributed labels, in-
stead of unbalanced distributions, simulating settings where (some)
clients may have large amounts of representative private data. Here
too, we considered untrained models on the CIFAR100 dataset. This
time, however, we set 𝐵 to 100 to minimize multiple occurrences of
the same label. Results are reported in Tab. 4. In this setting, LLBG
achieved perfect ASRs, surpassing other attacks by 20%-25%, except
for the untrained ResNet32, which violates LLBG’s assumptions.

Table 5: ASRs vs. trained ImageNetmodels.

Model LLG EBI LLBGaux

VGG19 80.90 ± 7.64 80.31 ± 7.97 85.66 ± 4.33
ResNet50 79.02 ± 9.36 78.57 ± 9.33 82.74 ± 4.16

EfficientNetB0 74.85 ± 10.04 87.14 ± 6.69 93.52 ± 2.15
ShuffleNetV2 79.10 ± 8.28 76.89 ± 7.92 78.21 ± 7.29
MNasNet-A1 80.37 ± 8.73 78.95 ± 9.06 82.13 ± 7.86

Table 6: LLBG𝛾 ASRs vs. trained ImageNetmodels.

Model 𝛾 = 0.5 𝛾 = 0.7 𝛾 = 0.9

VGG19 71.34 ± 10.88 78.87 ± 8.73 70.74 ± 11.15
ResNet50 64.05 ± 12.65 75.11 ± 12.51 73.90 ± 10.94

EfficientNetB0 78.15 ± 9.91 85.51 ± 8.40 77.00 ± 10.42
ShuffleNetV2 65.74 ± 11.89 75.29 ± 9.94 71.02 ± 12.11
MNasNet-A1 68.64 ± 11.57 77.77 ± 10.47 72.09 ± 10.57

6.5 Attacking Trained Models
As discussed by Wainakh et al. [37] and in §4, trained models’
gradients are distributed differently compared to untrained models,
rendering data and label reconstruction more challenging. We did
not apply LLBG in this setting, since one of its assumptions (namely,
the model’s output distribution being near uniform) does not hold
for trained models. Instead, we experimented with LLBGaux and
LLBG𝛾 , comparing them to LLG and EBI.

To approximate 𝑣 for the LLBGaux attack, we ran, for each class,
a batch of 10 samples pertaining to the class through the model,
applied the softmax function to the output, and averaged the prob-
ability estimates assigned to said class. We ran the experiments
on ImageNet, with pre-trained weights from the official PyTorch
implementation [7]. Tab. 5 reports the results. The LLBGaux attack
had the highest ASRs in almost all cases (with the exception of
ShuffleNetV2, where its ASR was comparable to LLG’s), attain-
ing the most significant advantage against LLG when attacking
the EfficientNetB0 model (∼19% higher ASR). We also note that
LLBGaux performed better against the trained ResNet50model than
LLBG’s performance against the untrained counterpart. We believe
this can be explained by the irregular behavior of the untrained
model (§6.2), which LLBGaux accounts for.

Tab. 6 shows LLBG𝛾 ’s ASRs against trained ImageNet models
with different values of 𝛾 . Interestingly, LLBG𝛾 achieved high ASRs,
scoring >10% higher than LLG for EfficientNetB0, and lagging
1–3% ASRs behind LLG and EBI for the other models. The best
results, across models, were achieved with 𝛾=0.7, suggesting that
the average confidence level of all models were similar. Indeed, we
were able to verify this empirically by calculating the average 𝑣 (𝑀)
of the empirical model confidence vector 𝑣 (used for LLBGaux) for
each model𝑀 :

𝑣 (𝑀) =
1
𝑛

𝑛∑︁
𝑖=1

𝑣𝑖

These values are reported in Tab. 7.
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Table 7: Average model confidence 𝑣 calculated for trained
ImageNetmodels.

Model 𝑣

VGG19 0.6269
ResNet50 0.6940

EfficientNetB0 0.6324
ShuffleNetV2 0.6363
MNasNet-A1 0.6735

Table 8: ASRs vs. untrained MLPs on CIFAR100, with varied
activations.

Activation LLG EBI LLBG

ReLU 81.93 ± 1.94 79.11 ± 1.38 99.56 ± 0.39
LeakyReLU 81.95 ± 1.95 79.11 ± 1.38 99.56 ± 0.39
Sigmoid 82.88 ± 1.61 82.80 ± 1.62 97.62 ± 0.94
Tanh 36.72 ± 21.10 79.16 ± 1.34 99.48 ± 0.40

6.6 Different Activation Functions
As discussed in §4, unlike LLG’s, our analysis does not assume
non-negative activation functions, rendering LLBG more general.
To empirically asses the effect of this fact, we ran attacks against a
small MLPwith several different activation functions: ReLU, Sigmoid,
LeakyReLU with 𝛼=0.01, and Tanh (the latter two emitting possibly
negative activations). Results are reported in Tab. 8. Sigmoid and
LeakyReLU had little impact on ASRs compared to ReLU activations.
However, the Tanh activation, emitting outputs ∈ [−1, 1], led to
a major drop (>50%) in LLG’s ASR. In comparison, LLBG’s ASR
remained high and roughly unchanged across all activations.

We also tested attacks against the popular Vision Transformer
(ViT) architecture [9], as it contains non-linear Gaussian Error
Linear Unit (GELU) [18] activations, emitting both negative and
positive activations. We ran the experiment with ImageNet dataset
and 𝐵=64 (due to memory constraints), considering both trained
and untrained models. For trained models, we approximated 𝑣 for
LLBGaux in the same manner as in §6.5. We also ran LLBG𝛾 with
𝛾 ∈ {0.5, 0.7, 0.9}. Tab. 9 reports the results.

Note that since the activation function is not non-negative and
there may be more negative columns in the weights gradient than
samples in the batch, the LLG attack was slightly modified, adding
the negative columns with highest sum (in absolute value) first, in
order to ensure that at most 𝐵 labels are reconstructed.

In both the untrained and trained cases, LLG’s ASRs dropped to
∼0%. In the untrained case, both EBI and LLBG achieved high ASRs
with <1% difference. In the trained case, LLBGaux had the highest
ASRs with a margin of >5% , with EBI still having a high ASR.

For the LLBG𝛾 the attack again has the most success with𝛾 = 0.7,
although in this case the gap between this attack and the best
(LLBGaux) is more significant. We calculate the average confidence
level of the model 𝑣 , similarly to §6.5, and find that for ViT, 𝑣 =

0.6892, explaining why setting 𝛾=0.7 leads to successful attacks.
Overall, these results demonstrate LLBG’s chief advantage: by

exploiting bias gradients (∇𝑏𝐿) instead of weight gradients (∇𝑊𝐿)

Table 9: ASRs against untrained and trained ViTmodels on
ImageNet, with a batch size of 128.

Attack 𝛾 Untrained Trained

LLG N/A 2.19 ± 1.89 0.34 ± 0.72
EBI N/A 95.36 ± 1.88 84.41 ± 8.77
LLBG N/A 94.90 ± 0.69 N/A

LLBGaux N/A N/A 90.20 ± 6.00
LLBG𝛾 0.5 N/A 70.25 ± 12.87
LLBG𝛾 0.7 N/A 81.22 ± 11.32
LLBG𝛾 0.9 N/A 76.58 ± 10.54

to extract labels, LLBG makes fewer assumptions about activations
than LLG, leading to amore general attack with higher ASRs against
a wide range of models with varied activation functions.

6.7 Impact of Label Extraction on Input
Reconstruction

Although our main focus in this work is exploring and enhancing
label extraction, we also wanted to test whether increasing ASRs in
this task impact the performance of input-reconstruction attacks.
Input-reconstruction attacks often assume accurate knowledge of la-
bels. However, in reality, adversaries need to infer labels (potentially,
with some errors) to reconstruct inputs. Next, we show that more
accurate label extraction, as attained by LLBG, results in markedly
better input-reconstruction success. In our experiments, we ran
input reconstruction with a small batch size, substantially smaller
than the ones considered in §6 because (1) input-reconstruction
quality deteriorates for large batch sizes; and (2) running input
reconstruction on large batches is computationally expensive.

In particular, we experimented with a MLP with Tanh activations,
training on CIFAR100 with batch size 𝐵=4 and an unbalanced parti-
tion of the data, meaning in this case each batch has two samples
with the same label, and the other two with random labels. We used
Geiping et al.’s Inverting Gradients attack [12] to reconstruct input,
with the default hyperparameters.1

At the end of input reconstruction, wemeasured several common
image-similarity metrics to assess how similar are reconstructed
inputs to the original data. Specifically, we measured Mean Squared
Error (MSE); Peak Signal to Noise Ratio (PSNR), which measures
the ratio between the maximum value of the signal (the image) and
the noise; Learned Perceptual Image Patch Similarity (LPIPS, [44]),
which compares the embeddings of a pre-trained model (namely,
AlexNet [22]) corresponding to the original and reconstructed sam-
ples; and Structural Similarity Index (SSIM, [38]) which estimates
the perceptual differences between two images via the mean and
variance of different patches in the image.

Tab. 10 reports the results, averaged over 100 repetitions of each
experiment condition. Even for this relatively small batch size, LLBG
had a significant advantage over LLG when attacking a model for
which the latter’s assumptions do not hold, i.e. the last activation is
not non-negative. While LLBG has a perfect ASR for every exper-
iment, LLG reconstructed < 1

2 of the labels correctly, on average,
1Using the Adam optimizer with a learning rate of 0.1, 𝛽1=0.9, and 𝛽2=0.99 for 24,000
steps.
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Table 10: Comparing the impact of label extraction using
LLBG vs. LLG on input reconstruction. Experiments were
on the CIFAR100 dataset, using an untrained MLP with Tanh
activations, with a batch size 4. Arrows pointing to the top
(resp. bottom) indicate that higher (resp. lower) metric values
are better. The ASR column reports label-extraction success,
while the columns to the right report input-reconstruction
metrics.

Attack ASR ↑ MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

LLG 44.89
±28.29

0.042
±0.024

16.14
±3.32

0.302
±0.132

0.389
±0.181

LLBG 100.00
±0.00

0.014
±0.006

19.317
±1.881

0.060
±0.016

0.711
±0.036

with a large standard deviation. In a few cases the LLG attack suc-
ceeded in extracting all labels correctly, but there were many cases
where the reconstruction was completely wrong and cases where
only 1 or 2 labels (out of 4) were reconstructed correctly.

Quantitatively, the data reconstruction using correct batch labels
(reconstructed using the LLBG attack) had much higher quality (i.e.
higher fidelity to the original images) compared to to using only
some correct labels (reconstructed using the LLG attack). This is
evident from the significant difference between the two rows of
Tab. 10 in each of the data-reconstruction metrics, with the attack
relying on LLBG achieving better values across the board. Qualita-
tively, the images reconstructed while relying on the LLBG attack
appeared similar to the original batch for most experiments (a ran-
domly chosen example is shown in Fig. 1(c)). In contrast, the attack
relying on LLG usually produced a medium fidelity reconstruction
of the samples for which the correct label was reconstructed (al-
though noisier compared to the other attack), while generating
complete noise or repeating the medium fidelity reconstructions to
some degree. All in all, these results emphasize the importance of
correct label extraction for data reconstruction.

6.8 Defenses
We now experiment with different defenses presented in §2.3.
Local DP We started with local DP, implemented by applying
clipping and introducing noise to the user’s gradients. When ap-
plying DP in a training process, a privacy budget 𝜀 needs to be
set in advance, and the noise added in each step of the training
process is calculated accordingly. Since in this case we do not run a
full training process and only compute gradients for a single batch,
we simply run with different noise and clipping levels, covering a
wide range of options. We first experimented with different clip-
ping values 𝜌 , setting the Gaussian noise’s standard deviation to
𝜎=0.1. We ran the attack against an untrained VGG19model with the
CIFAR100 dataset and a batch size of 128. Tab. 11 reports the results,
including the trivial case where 𝜌 = ∞ (meaning no clipping is
done). To assess the effect of DP on the model’s utility after training,
we trained an instance of the VGG19model for each setting reported
while applying the noise and clipping of the setting during training,
and report the test accuracy of the final model in Tab. 11 as well.
These results are reported in Tab. 11 as well.

Table 11: ASRs vs. untrained VGG19 on CIFAR100, with differ-
ent 𝜌 values for gradient clipping and 𝜎 = 0.01 for sampling
Gaussian noise, and relative accuracy (rightmost column) of
model after training with DP, compared to the baseline of
70.60%.

𝜌 LLG EBI LLBG Rel. Acc.

0.1 41.82 ± 3.55 62.93 ± 3.74 33.17 ± 1.56 −66.80%
0.5 84.77 ± 2.56 85.02 ± 1.85 70.85 ± 2.44 −54.47%
1 84.83 ± 1.95 83.13 ± 1.79 95.46 ± 1.21 −44.22%

1.5 84.77 ± 2.21 83.05 ± 1.77 95.46 ± 1.21 −38.80%
∞ 84.77 ± 2.21 82.84 ± 1.75 95.40 ± 1.21 −21.14%

Table 12: ASRs vs. untrained VGG19 on CIFAR100, with batch
size of 128, different 𝜎 values for sampling Gaussian noise,
and 𝜌=1 for gradient clipping, and Relative Accuracy (right-
most column) of model after training with DP, compared to
baseline of 70.60%.

𝜎 LLG EBI LLBG Rel. Acc.

0 81.63 ± 1.78 78.96 ± 1.38 99.63 ± 0.47 +0.65%
0.01 84.97 ± 2.01 83.42 ± 1.73 95.62 ± 1.14 −38.05%
0.1 37.01 ± 4.26 55.73 ± 4.20 75.19 ± 3.43 −69.60%
0.3 21.17 ± 3.65 29.14 ± 3.70 56.43 ± 8.88 −69.60%
0.5 17.38 ± 3.90 22.34 ± 3.70 41.82 ± 12.96 −69.60%

Setting 𝜌 ≥ 1 had little effect on all attacks in this setting, which
means that most gradients had lower norm and were not clipped.
For LLG and EBI significant privacy gains were only achieved for
𝜌=0.1, while the ASR of LLBG dropped for the case where 𝜌=0.5.
Of all three attacks, the EBI was least affected, having only ∼ 20%
decrease in ASR, while LLG had the largest decrease, of ∼82%. Still,
the accuracy loss of the trained model was substantial for all the
settings, and especially for the case where 𝜌=0.1. This puts into
question the usefulness of this defense.

We also experimented with adding Gaussian noise of different
standard deviations 𝜎 , while setting the gradient clipping value
𝜌=1. For this experiment we again attacked the untrained VGG19
model with CIFAR100 and batch size of 128. We experimented with
𝜎 ∈ {0.01, 0.1, 0.3, 0.5} and also trivial case where 𝜎 = 0 (i.e., no
noise added). Tab. 12 reports the results.

Except for two data points, the results show that ASRs of all
attacks were indeed inversely correlated to 𝜎 . The exceptions were
the ASRs of LLG and EBI for 𝜎=0.01, which were higher compared
to results for 𝜎=0. This is due to the fact that indices correlating
to labels that were in the training batch but had a non-negative
gradient were changed to a negative value by the noise addition,
leading these to be added to the reconstruction and its accuracy
rising. For higher 𝜎 values this effect was outweighed by the in-
formation obfuscation achieved by adding noise. The LLG ASRs
came close to the rate of the random attack at 𝜎 ≥ 0.3, for EBI this
is true only for 𝜎=0.5, and LLBG remained well above the random
attack for all values of 𝜎 tested. Although it was also affected in a
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Table 13: ASRs vs. untrained VGG19 on CIFAR100, with dif-
ferent values of 𝑝 for gradient compression, and Relative
Accuracy (rightmost column) of model after training with
compression, compared to baseline of 70.60%.

𝑝 LLG EBI LLBG Rel. Acc.

0 81.57 ± 1.78 78.96 ± 1.38 99.62 ± 0.39 +0.00%
0.1 82.13 ± 7.86 78.96 ± 1.38 99.62 ± 0.39 +0.24%
0.4 81.53 ± 1.78 76.02 ± 1.23 90.89 ± 1.41 +0.12%
0.8 78.32 ± 1.45 76.02 ± 1.22 83.65 ± 1.87 −2.78%
0.9 77.52 ± 1.38 76.02 ± 1.23 82.62 ± 2.11 −5.91%
0.99 73.88 ± 2.37 50.70 ± 3.49 64.20 ± 3.08 −38.00%

significant manner (dropping from ∼99% to ∼41%) by this defense,
it was more robust against it, compared to the other two attacks.

Clipping alone had no noticeable effect on accuracy, compared
to the case where no clipping is applied. However, any addition
of noise had a major effect on the accuracy of the trained model,
and for 𝜎 > 0.01 reduced the accuracy to 1%, equivalent to random
guessing for CIFAR100. These results also suggest that DP may
have too high a cost to be relevant defense against label leakage.
Gradient Compression We also experimented with gradient com-
pression, described in §2.3. We implemented compression as de-
scribed by Lin et al. [24]—i.e. compressing the aggregated gradient
of each weight and bias vector separately, with the threshold for
each gradient set according to its 𝑝th percentile value. We exper-
iment with an untrained VGG19 model, on the CIFAR100 dataset
with batch size of 128, and values 𝑝 ∈ {0, 0.1, 0.4, 0.8, 0.9, 0.99} (for
𝑝=0 no compression is performed). Results are reported in Tab. 13.
To assess the effect of compression on the model’s utility after
training, we also trained an instance of the VGG19 model for each
setting (including 𝑝 = 0 where no compression is applied, which is
the baseline) and reported its final test accuracy (also in Tab. 13).

Unlike the results for compression reported byWainakh et al. [37],
which showed it to be a highly effective defense, lowering the ASR
of LLG to below random guess when 𝑝=0.8, we found its effect
against LLG to be minor, while having a large effect against EBI
only when 𝑝 = 0.99. While there is a non-negligible effect against
LLBG when 𝑝 ≥ 0.4, the ASR remained relatively high for 𝑝<0.99.
The main difference from the experiment reported byWainakh et al.
is the dataset used, where in that case it was the MNIST dataset [23],
which only has 10 classes compared to 100 for CIFAR100. These
results suggest that for unbalanced data compression is only ef-
fective as a defense in cases where 𝐵 ≫ 𝑛, since only then does
compression remove sufficient information from gradients.

To achieve a significant decrease in ASR of all attacks via com-
pression (at 𝑝=0.99) a substantial loss of utility of the final model
is incurred. This may be avoided by changing the training proce-
dure (e.g. adding more training epochs) but also indicates that this
defense has an unfavorable utility-privacy trade-off.
Removing the Bias Another defense we considered is one tailored
specifically against our LLBG attack: it removes the bias parameter
from the last linear layer of the model, resulting in a linear layer
consisting of only a weights matrix. With this defense the LLBG
and EBI attacks are not applicable, as there is no bias gradient (in

Table 14: ASRs vs. VGG11 on CIFAR100, with and without bias
at the last layer, considering different training stages.

Untrained, w/ Trained, w/ Untrained, w/o Trained, w/o

LLG 79.34 ± 1.48 79.20 ± 7.14 79.19 ± 1.54 78.06 ± 7.40
EBI 79.05 ± 1.37 79.36 ± 7.12 N/A N/A
LLBG 99.63 ± 0.39 N/A N/A N/A

LLBGaux N/A 75.04 ± 7.48 N/A N/A

the last layer) to exploit for label extraction, while the LLG attack
remains applicable, since neither its analysis nor its implementation
require the bias gradient. Note that this defense is only applicable
when training a model from scratch. If a partially trained (or pre-
trained) model is used, removing some of its parameters will harm
its performance and will defeat the purpose of using such a model.

We experimented with the VGG11 model [33] on CIFAR100, with
four different settings: randomly initialized or trained [39] and with
the original architecture or without the last bias. The accuracy of
the trained models was roughly the same (∼68%) with and without
the bias parameters in the last layer. In other words, removing the
bias from the last layer did not impact the model accuracy.

We report attacks’ ASRs in Tab. 14. When including weight
biases, LLBG was the strongest attack against untrained models,
while the remaining attacks were comparable for both untrained
and trained models. When removing bias, EBI, LLBG, and LLBGaux
all became non-applicable as they require the bias gradients (i.e.,
the defense managed to hinder them without harming model ac-
curacy). As for LLG, however, it remained mostly unaffected by
the training status and the removal of the bias parameter, meaning
other defenses remain necessary for mitigating it.

7 Conclusion
We propose LLBG, a novel label-reconstruction attack against FL
derived from deep learning models’ last layer bias gradients. Specif-
ically, we offer two LLBG variants tailored for FL at different stages:
one for randomly initialized, untrained models, and another for
trained models. We tested LLBG under a wide variety of settings,
including with two popular datasets, a collection of models with
varying complexities and sizes, different training stages, batch sizes,
and defenses. We found that LLBG achieved the highest success
rates compared to prior leading attacks in almost all settings, and
enabled label reconstruction with remarkable success in settings
where past attacks may not apply. Our work also offers simple, yet
effective means to mitigate the LLBG variants.
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