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Abstract

We propose new, more efficient targeted white-
box attacks against deep neural networks. Our
attacks better align with the attacker’s goal: (1)
tricking a model to assign higher probability to
the target class than to any other class, while (2)
staying within an ε-distance of the attacked in-
put. First, we demonstrate a loss function that
explicitly encodes (1) and show that Auto-PGD
finds more attacks with it. Second, we propose
a new attack method, Constrained Gradient De-
scent (CGD), using a refinement of our loss func-
tion that captures both (1) and (2). CGD seeks to
satisfy both attacker objectives—misclassification
and bounded `p-norm—in a principled manner, as
part of the optimization, instead of via ad hoc post-
processing techniques (e.g., projection or clip-
ping). We show that CGD is more successful on
CIFAR10 (0.9–4.2%) and ImageNet (8.6–13.6%)
than state-of-the-art attacks while consuming less
time (11.4–18.8%). Statistical tests confirm that
our attack outperforms others against leading de-
fenses on different datasets and values of ε.

1. Introduction
With the prevalence of machine learning (ML), adversar-
ial ML techniques that slightly manipulate the inputs of
an ML model to influence its functionality have also been
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developed (Croce & Hein, 2020b). One type of attack on
classification models is the evasion attack, which applies a
small perturbation, within a distance limit, to a classifier’s
input to induce misclassification during inference. The `∞
distance is commonly used for specifying distance limits
via ε boundaries, which define the maximum change ac-
ceptable in each element of the input. In previous work it
is also common for attackers to have access to all weights
of the model, known as the white-box scenario, and the at-
tackers aim to force a specific misclassification, performing
targeted attacks. Previous work proposes an attack method
that iteratively perturbs an input in the direction of the gra-
dients of a loss function, which is not necessarily the same
loss function used by the model, and automatically truncates
the attack in each iteration to stay within the distance lim-
its. Researchers have shown that such attacks are effective
against state-of-the-art neural networks (Moosavi-Dezfooli
et al., 2016; Szegedy et al., 2014).

Croce et al. show that well-tuned parameters and carefully
designed loss functions can boost the performance of at-
tacks (Croce & Hein, 2020b). For example, varying the loss
function of Auto Projected Gradient Descent (Auto-PGD),
a state-of-the-art attack, between the cross-entropy, Carlini
and Wagner (CW), and Difference of Logits Ratio (DLR)
losses has a substantial impact on the attack’s performance.
Guided by this observation, we define a new loss function,
the Minimal Difference loss (MD loss), that better aligns
with the goal of a targeted attack: MD loss aims to (mis)lead
the model to assign higher confidence to the target class than
to any other class, even if by just a tiny amount. We em-
pirically show that Auto-PGD with the MD loss finds on
average 0.5–12.3% more adversarial examples, depending
on the dataset and model, than Auto-PGD with other loss
functions.

Although MD loss substantially improves Auto-PGD’s per-
formance, we still notice limitations that hinder the attack’s
effectiveness. In particular, like other attacks in the PGD
family, Auto-PGD uses projection at the end of each iter-
ation to satisfy the norm constraints, eliminating changes
that fall outside a predefined `p ball. However, projecting
adversarial examples back into the `p ball may work against
the attacker’s misclassification objective, thus harming the
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attack’s success. Moreover, because projection is imple-
mented by clipping, an ad hoc operation to eliminate any
changes made outside the `p ball, balancing the attack’s
two objectives (i.e., misclassification and not leaving the
`p ball) remains a challenge for Auto-PGD. To address this
shortcoming, we propose the Constrained Gradient Descent
(CGD) attack. CGD enables the attacker to balance the two
attack objectives—it allows adversarial examples to lie out-
side the `p ball during the attack process and models the
violation of the norm constraints as part of its loss function
to gradually learn to stay within the `p ball while achieving
misclassification. We find that, with the same `∞ distance
limit, CGD finds on average 0.3–1.3% more adversarial ex-
amples than Auto-PGD using the MD loss, while consuming
less time (11.41–18.76%). Furthermore, we show that CGD
outperforms Auto-PGD with three previously established
loss functions on the CIFAR10 and ImageNet datasets, with
statistical significance.

As an example of using CGD as a framework to find other
types of attacks, we also define a variant of CGD for white-
box untargeted attacks. Similar to its targeted attack counter-
part, this variant also gradually learns to stay within the `p
ball while achieving misclassification, due to modeling the
violation of the norm constraints as part of its loss function.
This variant outperforms the previous best attack by 0.3–2%
on the CIFAR10 dataset, on average.

In a nutshell, our contributions are:

• We improve an established targeted attack method by
offering a new loss function that better captures the
goal of targeted attacks (§3).

• We invent a new attack that learns to stay within the `∞
distance limit rather than using simple clipping (§4),
and we empirically demonstrate that it outperforms
previously established ones (§5–6).

• We demonstrate how the proposed method can be used
as a framework for attacks by instantiating it to define
a stronger untargeted attack (§7).

2. Background
2.1. Threat Model

Adversary goals We consider a supervised classification
setting in which an ML model F is trained to map a sample
x to the correct label y by minimizing a loss functionL(x, y)
such as the cross-entropy loss (LCE). At inference time, a
sample x is assigned the class i with the highest logit Zi
or highest confidence Pi. To find an adversarial example
x′, the adversary could either launch an untargeted attack,
avoiding correct classification by maximizing L(x′, y), or
launch a targeted attack, forcing specific classification to

class t by minimizing L(x′, t) (Papernot et al., 2016). We
permit the attacker white-box access to F , i.e., so that the
attacker knows the internal weights of F .

Evaluation metrics Given a specific `p distance limit ε,
the success rate of an untargeted attack is computed as the
percentage of benign inputs x from which the attack finds
x′ ∈ {x̃ | F (x̃) 6= y ∧ `p(x̃, x) ≤ ε}, whereas the success
rate of a targeted attack is defined as the percentage of
benign inputs x where the attack finds x′ ∈ {x̃ | F (x̃) =
t∧ `p(x̃, x) ≤ ε}. In this paper, we primarily study targeted

attacks for `∞(x, x′) = maxi,j,k

∣∣∣xi,j,k − x′i,j,k∣∣∣, i.e., `∞
measures the maximum change made across all pixels and
channels, where i and j are pixel coordinates, and k is the
channel index.

Successful adversarial examples should also be in the same
format as benign samples. Images are normally in 8-bit
RGB format: every pixel consists of three bytes, three inte-
gers ∈ [0, 255] normalized to floats ∈ [0, 1]. The value of
every channel (of every pixel) should be a multiple of 1/255.
We picked ε values that are multiples of 1/255 so that the
`∞ distance limit is in 8-bit RGB format. We noticed that
certain attacks (e.g., PGD) could perturb an adversarial ex-
amples into failed ones after quantization. Hence, in each
attack iteration i from starting sample x, we produced an
8-bit RGB format copy of the current adversarial example
x′i using the formula

xtest = round(x′i ∗ 255)/255

and clipped xtest to be within both [0, 1] and [x− ε, x+ ε]
(we denote this operation by clip(xtest)), projecting it onto
the `∞ ball that is also bounded by the range of values
of valid images. We then classified clip(xtest) using the
model and compared the output with the target class. If they
matched, we stopped perturbing this example and counted
the attack as successful. Otherwise, the attack continued
normally, with x′i remaining in the continuous domain.

2.2. Attack Methods

We now introduce prominent established attacks.

PGD An improved version of fast gradient-sign
method (Goodfellow et al., 2015), the projected gradient
descent (PGD) attack (Madry et al., 2018), which iteratively
calculates a projection on the imperfect ε ball around the
benign source image so that the adversarial example is a
valid image and within the max distance limit:

x′i+1 = clip(x′i − α · sign(
∂L(x′i, t)

∂x′i
)) (1)

where α controls how much perturbation would be applied
in each iteration and loosens the linear assumption of mod-
els for PGD. By default, PGD is configured to run for 40
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iterations, and the step size of each iteration, α, is set to
.01, where the values of each channel (of each pixel) in the
images are normalized to [0, 1]. The default loss function
used in PGD is the CE loss.

Auto-PGD Croce and Hein (2020b) were able to boost
PGD’s performance by intelligently setting its parameters
(e.g., the step size α). Except for the number of iterations,
the algorithm they proposed, Auto-PGD, does not require
parameter tuning. Croce and Hein also showed that the
loss function in PGD can markedly influence the attack’s
success rate. By default, Auto-PGD runs with the Difference
of Logits Ratio (DLR) loss:

LDLR =
Zt − Zy

Zπ1 − 0.5Zπ3 − 0.5Zπ4
(2)

whereZπs are logits sorted from largest to smallest. Another
commonly used loss function is the Carlini-Wagner (CW)
loss (Carlini & Wagner, 2017a):

LCW = −Zt +maxi 6=tZi (3)

LCW and LDLR both try to make the logit of the target
class larger than other logits, which would cause the model
to assign the highest probability to the target class.

2.3. Defenses

Researchers have proposed a variety of defenses to miti-
gate adversarial examples. Regarded as one of the strongest
defenses (Akhtar et al., 2021), adversarial training aug-
ments the training process with correctly labeled adversar-
ial examples to enhance models’ robustness against them
(e.g., (Goodfellow et al., 2015; Kurakin et al., 2017b; Madry
et al., 2018; Shafahi et al., 2019; Wang et al., 2020)). As is
common in related work (Croce & Hein, 2020b; Dong et al.,
2018; Madry et al., 2018; Uesato et al., 2018; Xiao et al.,
2018), we evaluate our proposed attacks against adversari-
ally trained neural networks (see §5).

3. A Stronger Loss Function
In this section, we describe how we enhanced Auto-PGD’s
performance by improving its loss function. We first present
an example scenario where a previous best-performing loss
function falls short (§3.1). Then we describe a new loss
function that mitigates the previous loss function’s weak-
nesses (§3.2). We report on the performance of the new loss
function in §6.

3.1. Investigating Established Loss Functions

To produce a baseline for comparison, we ran Auto-PGD
for 100 iterations, as it is used in previous work (Croce &
Hein, 2020b), with three loss functions: CW, DLR, and CE.
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Figure 1: Confidence scores of three classes throughout 40
iterations of the Auto-PGD attack using CW loss to perturb
a CIFAR10 image to class 7. Classes 8 and 9 took turns to
have the highest confidence score, and the attack ultimately
failed to produce a successful targeted adversarial example.

We found that CW loss performed the best against six out
of seven CIFAR10 models as well as the ImageNet model
we used. Still, we identified specific instances in which
Auto-PGD with CW loss failed to find adversarial examples.
One of them is demonstrated in Fig. 1. We identified that
these failures can be often explained by the definition of
CW loss. CW loss tries to increase the difference between
the logit of the target class and the highest among the logits
of the non-target classes; however, which non-target class
has the highest logit may change from iteration to iteration.
Namely, decreasing the value of the logit of the highest
non-target class might simply cause the logit of another
non-target class to increase and become the highest in the
next iteration. Thus, the target class might never have a
chance to have the highest logit and the attack might never
succeed, as illustrated in Fig. 1.

We noticed that such failures can also happen with more
than two non-target classes taking turns having the highest
confidence scores. We used the maximum number of times
that the prediction was changed to a certain class before the
perturbation first succeeds or the attack reaches the maxi-
mum number of iterations as a metric to capture how often
the behavior in Fig. 1 occurs. For 226 of 512 images sam-
pled from CIFAR10, there is some ε at which the prediction
was changed to the same class at least 10 times when Auto-
PGD with CW loss attacked the DSL+20 (Ding et al., 2020)
defense. We observed the same phenomenon with 265 of
512 samples on the WRK20 (Wong et al., 2020) defense.
More details could be found in App. C.
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3.2. A New Loss Function

The example in Fig. 1 shows how a loss function that does
not completely align with the attack’s intent can sometimes
fail to produce successful adversarial examples. Intuitively,
the attacker’s goal is to produce a perturbation for which the
target class’ logits and probabilities are higher than those
of all other classes, even if by only a miniscule amount, so
that the target class would be selected as the prediction.

We capture this intuition by designing a new loss function
containing terms representing each logit. More precisely,
the loss function is the sum over all such terms (each repre-
senting a logit), where each term’s value is determined as
follows. The term is zero if the logit is smaller than the logit
of the target class, as the adversary has no interest in directly
decreasing small logits that do not influence the model’s
prediction. Alternately, the term is positive if the logit does
not belong to the target class and is larger than or equal to
the target class’s logit, as the adversary has to decrease all
non-target logits to make a successful perturbation. By min-
imizing this loss function, the adversary aims to decrease
all the positive terms simultaneously and consequentially
decrease all the logits that are higher than the logit of the
target class in the same iteration.

We define this loss function, the Minimal Difference (MD)
loss, as: ∑

i

ReLU(Zi + δ − Zt) (4)

where ReLU is the rectified linear unit function, Zt is the
logit of the target class, and Zi are the logits of each class
(as described in §2.1). δ is a minimal value introduced
to mitigate the cases where non-target classes have equal
logits with the logit of the target class. We set δ to 1e−15
in our implementation, because 1.0 − (1e−16) = 1.0 in
Python due to finite arithmetic. Zt is not excluded from Zi
as ReLU(Zt + δ − Zt) = δ is always a constant and has
no effect on the back-propagation gradients.

In contrast to CW loss, MD loss aims to decrease all logits
that do not belong to the target class and are higher than the
logit of the target class, rather than only the largest of the
non-target-class logits. Logits that meet the following three
requirements are more likely to decrease between iterations
if the attacker is using MD loss instead of CW loss: (1) they
do not belong to the target class; (2) are higher than the logit
of the target class; and (3) are not the largest logit. Hence,
with MD loss the behavior demonstrated in Fig. 1 (i.e., non-
target logits alternating at being the highest logit) is unlikely
to occur and, intuitively, the attacker is more likely to suc-
ceed. We found that MD loss reduced the maximum number
of times that the prediction was changed to a different class
at every value of ε (see App. C) and confirmed the statistical
significance of this result with a Wilcoxon signed-rank test
(Wilcoxon, 1945) (details in App. B). We show in §6 that

using MD loss instead of CW loss consequently improves
Auto-PGD’s ability to find adversarial examples.

4. A Stronger Attack Method
In this section, we describe our new attack method, Con-
strained Gradient Descent (CGD). We start by explaining
the intuition that drives the design and an enhancement
(§4.1–4.2), and then detail our algorithm (§4.3). We report
on the performance of the new attack in §6.

4.1. Learning to Stay Within the Distance Limit

PGD attacks, including Auto-PGD, enforce the `∞ distance
limit by executing a clip(·) computation in each iteration,
eliminating any perturbations made outside the limit. How-
ever, the loss function used in PGD attacks does not take into
account that clip(·) will be used. Hence, in PGD attacks,
gradients, which are derivatives of loss functions against the
current perturbation, may not accurately direct the perturba-
tion. The gradients may push the attack toward perturbations
outside the `∞ distance limit, while successful perturbations
within the `∞ distance limit may lie in other directions. Pre-
vious work has shown that attacks could learn to minimize
their distance limit from the original benign image (Carlini
& Wagner, 2017a; Szegedy et al., 2014). We propose a
new loss function that helps attacks learn to stay within a
fixed `∞ distance limit, and then propose a new attack that
utilizes this loss function. We next describe how we include
the `∞ distance limit as part of the new loss function.

Defining boundaries Before starting to create a pertur-
bation x, we know that for an attack to be valid the upper
and lower boundaries of each channel k ∈ {0, 1, 2} of pixel
(i, j) in the final perturbation are

bndupper
i,j ,k (x ) = min(xi,j,k + ε, 1) (5)

and
bnd lower

i,j ,k (x ) = max(xi,j,k − ε, 0) (6)

These two boundaries are fixed throughout the attack pro-
cess. As xi,j,k ∈ [0, 1], in each channel (of each pixel), in
any iteration of an attack the updated perturbation could po-
tentially exceed at most one boundary at a time (for any one
channel of any pixel). Thus, we can compute the distance,
for each channel (of each pixel), by which the current per-
turbation x′ goes over the boundary. We call this distance
Overruni,j,k(x

′) and define it as:

ReLU (x′i,j,k−bndupper
i,j ,k (x ))+ReLU (bnd lower

i,j ,k (x )−x′i,j,k)
(7)

Overruni,j,k(x
′) is 0 if x′ stays within the ε-boundary for

channel k of pixel (i, j).
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Penalizing exceeding boundaries We next add to the loss
function the following term.

Lbnd =
∑
i,j,k

(Overruni,j,k(x
′)2) (8)

Overruni,j,k(x
′) is squared because when taking the deriva-

tive, ∂Lbnd

∂x′i,j,k
is proportional to Overruni,j,k(x

′) and could
direct the attack to learn to stay within the boundary. Our
new loss function is now:

w ∗ Lcls + (1− w) ∗ Lbnd (9)

where Lcls is MD-loss (as described in §3) and w ∈ [0, 1]
is a weighting parameter. By decreasing w and weighting
Lbnd more heavily, we guide the attack to gradually move
the perturbation in a direction that leads to the target class
while not crossing the boundary, ultimately creating a valid
adversarial example after rounding and clipping.

Leveraging magnitude of gradients We also change the
way that the attack iteratively updates the perturbation. To
the best of our knowledge, previous `∞ attacks that use gra-
dients, ∂Loss

∂x′i,j,k
, only use the sign of these gradients to gen-

erate adversarial examples (e.g., (Goodfellow et al., 2015;
Kurakin et al., 2017a; Madry et al., 2018)), although some
use momentum along with the sign (Croce & Hein, 2020b;
Gowal et al., 2019). However, the magnitude of the gradi-
ents also conveys information about the amount by which
it is helpful to change a channel (of a pixel). Leveraging
the magnitude of the gradients also helps avoid artificially
(and unhelpfully) large step sizes that would make the per-
turbations step over the boundary, which we observed in,
e.g., PGD attacks. Auto-PGD uses an explicit momentum
term as well as gradients when computing the changes to
be made to the candidate adversarial example in each itera-
tion. In contrast, we compute these changes via an Adam
optimizer (Kingma & Ba, 2015), which internally uses mo-
mentum; other optimizers may also be adequate.

4.2. Driving out of Local Minima

While Lbnd accounts for any channel (of any pixel) po-
tentially crossing the ε-boundary, we observed that attacks
could become trapped in local minima of Lbnd that occur
when most channels are within the boundary but a small
number is far beyond the boundary. To prevent this, we set
a threshold distance outside the upper and lower ε bound-
aries, and we decay this threshold gradually as the attack
progresses. As Lcls decreases, we desire the attack to also
reduce Overrun , ultimately to zero. The decreasing thresh-
old encourages this by increasing the relative weight of
Lbnd . Model-specific constants, namely pre-defined fixed
ratios and checkpoints, control where the threshold starts
and how fast it decays. If the current perturbation is outside

Figure 2: This is an example path of a CGD attack with a
`∞ distance limit. We start with a random initial perturba-
tion. In stage 1, we push the current perturbation to the ε
boundary. In stage 2, the current perturbation moves beyond
the threshold and Lbnd > 0. In stage 3, the current perturba-
tion is pushed inside the threshold as Lbnd is more heavily
weighted. In stage 4, the current perturbation moves closer
to the ε boundary, as does the threshold.

the threshold, we halve the weight w of Lcls (in Eqn. 9) to
increasingly urge the attack to stay within the boundary.

We ran grid searches to choose the starting threshold and de-
cay interval for each defense. We examined starting thresh-
olds ∈ [.5ε, 9ε], starting the weighting parameter of the loss
function w ∈ [0.01, 0.5], and decay intervals ∈ [5, 30]. For
all defenses, the optimal starting weighting parameterw was
0.1 and the optimal decay interval was every 15 iterations.
The optimal starting threshold was 8ε for SIE+20, 5ε for
DSL+20, and 1.5ε for all other defenses (see §5).

4.3. The Constrained Gradient Descent Algorithm

Combining all the above, we define a new attack: Con-
strained Gradient Descent (CGD). Fig. 2 illustrates an ex-
ample path of CGD where the attack seeks to satisfy the `∞
distance limit.

We start the attack with a random initial perturbation to
better explore the space of possible adversarial examples, as
this was shown to be helpful in prior work (Croce & Hein,
2020a; Madry et al., 2018; Mosbach et al., 2018). The attack
has four stages. In stage 1, we move each channel (of each
pixel) by ε in the direction of the gradients. This is a quick
way to take a substantial step in the direction of the target
class. In stage 2, the candidate perturbation continues to
move toward the target class, and potentially moves outside
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the threshold, as the loss function is dominated by Lcls . If
the candidate perturbation moves beyond the threshold, the
algorithm moves to stage 3: since the candidate perturbation
is outside the threshold, Lbnd is more heavily weighted,
which pushes the candidate perturbation back inside the
threshold. After a fixed number of iterations, the algorithm
enters stage 4, in which the threshold itself moves toward
the ε boundary, thus forcing the candidate perturbation to
move closer to the ε boundary. The attack could succeed in
any stage. Pseudocode with line-by-line descriptions can be
found in App. A.

5. Evaluation Setup
Factors other than the algorithm, such as the random initial-
ization chosen (Tashiro et al., 2020) and which classes are
targeted, can also influence attacks’ performance. Here we
summarize how we set up experiments to enable meaningful
and fair comparisons; more details can be found in App. D.

Benchmarks Because adversarial training is regarded
as a strong defense, we evaluated attacks against ad-
versarially trained models, in line with prior work (see
§2.3). Specifically, we used seven pre-established ad-
versarially trained models for CIFAR10: CRS+19 (Car-
mon et al., 2019), DSL+20 (Ding et al., 2020),
HLM19 (Hendrycks et al., 2019), SWM+20 (Sehwag et al.,
2020), WRK20 (Wong et al., 2020), WXW20 (Wu et al.,
2020) and WZY+20 (Wang et al., 2020); and two versions of
SIE+20 (Salman et al., 2020), pre-established and publicly
available adversarially trained models on ImageNet.

Experiment setup Croce et al. found that PGD attacks
find more adversarial examples the more iterations they
run (Croce & Hein, 2020b). Auto-PGD declares the number
of iterations as its only parameter. In this work, we ran
all attacks for 100 iterations—the default configuration of
Auto-PGD (Croce & Hein, 2020b)—to fairly compare the
attack methods. For CIFAR10, we measured the success
rate against seven defenses, using the same target, 20 ran-
dom initial perturbations, and two ε values per image, for a
total of 280 sets of 10,000 attack attempts. For ImageNet,
we used five random initializations, five targets, and two ε
values per image, thus resulting in 50 sets of 50,000 attack
attempts.

6. Evaluation Results
In this section, following the setup described in §5, we
compare Auto-PGD using our MD loss with Auto-PGD
using previously established loss functions and also our
CGD attack with Auto-PGD. We first report on raw results
(§6.1) and then on the statistical tests we performed (§6.2)
to demonstrate that CGD outperformed the previously best

Auto-PGD with statistical significance. We also compare
the time cost of attacks (§6.3) and discuss the uniqueness of
the adversarial examples generated (§6.4).

6.1. Raw Results
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Figure 3: The relative improvement in the number of adver-
sarial examples found by attacks on different defenses com-
pared to the worst-performing attack. Experiments were per-
formed using 10,000 images from the test set of CIFAR10,
ε = 16/255, 20 different random initial perturbations, and
a fixed random target offset. The worst-performing attack
for each defense (with a median of 0) was selected as the
baseline. The y-axis denotes the improvement compared
to the average performance of the baseline. For example,
0.08 on the y-axis indicates 8% more adversarial examples
found compared to the baseline. The number in parentheses
under each defense is the average number of times which
the baseline succeeded out of 10,000 attempts.

As described in §5, we made 280 sets of 10,000 attack
attempts on CIFAR10 and 50 sets of 50,000 attack attempts
on ImageNet. We compared our two improvements, Auto-
PGD using our MD loss (§3) and CGD (§4), to Auto-PGD
using three pre-established loss functions: CE loss, DLR
loss, CW loss. Implementations of Auto-PGD with CE loss
and DLR loss are the ones published by the authors (Croce
& Hein, 2020b). We performed this comparison on two
datasets and multiple defenses and values of ε (see §5).

On average, Auto-PGD with MD loss found more adversar-
ial examples than Auto-PGD with any of the three other loss
functions , thus demonstrating the benefits of the MD loss
compared to previous conventional loss functions. Addition-
ally, CGD performed better than Auto-PGD with MD loss,
further demonstrating the advantages of the CGD attack
strategy to satisfy the `p-bound constraints compared to ad
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hoc clipping. The ranking of attacks other than Auto-PGD
with MD loss and CGD varied slightly depending on the
defense.

Fig. 3 shows the relative number of adversarial examples
these attack methods found on CIFAR10 with ε = 16/255.
Among the previously proposed attacks (Auto-PGD with
one of CE, DLR, or CW loss), which performed least well
and which performed best varied by defense. The best
attacks were on average 1.6–6.0% better than the baseline
attacks. Auto-PGD with MD loss was on average 0.6–4.5%
better than the best performing Auto-PGD that did not use
MD loss; and CGD was on average 1.2–5.1% better than
the best performing Auto-PGD that did not use MD loss.
CGD outperformed Auto-PGD with MD loss in 139 out of
140 sets of attempts and outperformed Auto-PGD (with any
other loss function) in all of the sets of attempts. Depending
on the defense, the ranking of the other attack methods
changed, but CGD and Auto-PGD with MD loss always
performed better than other attack methods. We observed
similar results with different values of ε and when using
the ImageNet dataset, as shown in App. E. When evaluated
against SIE+20 on the ImageNet dataset with ε = 4/255,
CGD was 11.0% better than Auto-PGD with CW loss (the
previous best Auto-PGD). When using ε = 8/255, CGD
was 13.6% better than Auto-PGD with CW loss against
SIE+20 on ImageNet.

6.2. Statistical Analysis

We also performed statistical analysis to compare the per-
formances of different attack methods. We defined a
variable ConditionalSuccessi for an image i as the to-
tal number of successful perturbations made by an at-
tack with all random initial perturbations, and all the ran-
dom target offsets we tried given the specific dataset,
defense, and ε. ConditionalSuccessi ∈ [0, 20] on CI-
FAR10 while ConditionalSuccessi ∈ [0, 25] on ImageNet.
Each ConditionalSuccessi is independent. We used the
Wilcoxon signed rank test to compare ConditionalSuccessi
of CGD and Auto-PGD with MD loss.

We performed the one-sided Wilcoxon signed rank test
(Wilcoxon, 1945) with the null hypotheses that Auto-PGD
with MD loss had equal or better performance than CGD
for each combination of ε, dataset, and defense that we tried.
Overall, we conducted 16 statistical tests, for the 16 differ-
ent combinations we had. To account for the multiple tests,
we used Bonferroni correction to adjust the confidence level
α to .05/16 = 0.003125. We found the p-values are below
α in 11 out of 16 tests. Namely, CGD performed statistically
significantly better than Auto-PGD with MD loss across 11
combinations of ε, dataset, and defense that we tried.

We performed a similar one-sided Wilcoxon signed rank
test (Wilcoxon, 1945) with the null hypotheses that the best

performing attack among Auto-PGD using the DLR loss,
CW loss, and CE loss performed equal to or better than CGD
in each combination of value of ε, dataset, and defense that
we tried. Again, we used the adjusted normal approximation
of the test statistic and Bonferroni corrections. All the p-
values were far smaller than α = 0.003125, and so we reject
the null hypotheses in all 16 cases, hence demonstrating that
CGD significantly outperformed Auto-PGD with the losses
proposed in prior work across each combination of ε, dataset,
and defense that we tried. More details of these tests can be
found in App. F.

6.3. Time Complexity

We ran all attacks for 100 iterations, as described in §5, and
conducted 30 and 100 time measurements per attack-defense
pair for the CIFAR10 and ImageNet datasets, respectively.
The results are shown in Tab. 1.

Table 1: The average time in seconds used to perturb batches
of 512 images from CIFAR10 or 10 images from ImageNet,
using NVIDIA GeForce RTX 3090 GPUs. There are two
versions of SIE+20, trained with ε = 4/255 (SIE+20-4) and
ε = 8/255 (SIE+20-8).

attack methods Auto Auto Auto Auto CGD
-PGD -PGD -PGD -PGD

loss CE CW DLR MD
dataset defense time (seconds)

DSL+20 26.4 26.9 26.9 26.8 22.0
WRK20 17.0 17.7 17.6 17.5 14.5
HLM19 115.8 117.0 115.9 116.7 100.9

CIFAR10 WZY+20 116.5 116.6 117.1 116.2 103.3
SWM+20 115.0 115.2 115.6 114.8 100.1
CRS+19 116.2 116.7 116.7 116.3 101.5
WXW20 116.4 116.7 116.4 116.3 102.6

ImageNet SIE+20-4 7.7 7.7 7.8 7.8 6.4
SIE+20-8 7.7 7.7 7.8 7.8 6.4

We found that CGD was on average faster than all Auto-
PGD attacks against all defenses by 11.41–18.76%. We
confirmed this relationship with one-sided Wilcoxon tests
(App. B). As we have nine defenses and four baseline at-
tacks, we used Bonferroni correction to adjust the confi-
dence level α to .05/36 = 0.0014.

6.4. Uniqueness of Attacks

As we observed in §6.1–6.2 that CGD found more adversar-
ial examples than other attack methods did in most of the
sets of attempts, we wondered if the adversarial examples
other attacks found could be a subset of those CGD found.
However, we discovered that among the attack methods we
tried, each of them found a slightly different set of success-
ful adversarial examples, as shown in Fig. 4. In addition,
each attack succeeded in finding an adversarial example for
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some specific input for which no other attack succeeded, as
shown in Fig. 5. We observed the same phenomenon across
attack methods, values of ε, defenses, and datasets. More
details can be found in App. I.
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Figure 4: The average number of successful adversarial
examples found by attack A but not by attack B in each
set of 10,000 attempts on the testing set of CIFAR10 using
ε = 16/255 against the DSL+20 (Ding et al., 2020) defense,
rounded to whole numbers.

DSL+20 WRK20 HLM19 WZY+20 SWM+20 CRS+19 WXW20

Auto-PGD with
 CE loss

Auto-PGD with
 DLR loss

Auto-PGD with
 CW loss

Auto-PGD with
 MD loss

CGD

21 2 5 4 3 3 1

79 9 9 14 7 12 7

9 12 16 16 11 12 8

24 16 21 14 10 11 8

79 62 40 65 43 46 42

Figure 5: The average number of successful adversarial
examples found by an attack, but not by any of other attack
methods, against each defense in each set of 10,000 attempts
on the testing set of CIFAR10 using ε = 16/255, rounded
to whole numbers.

At the same time, when the same attack method is given
different random initial perturbations, the attack always
found a slightly different set of adversarial examples, within
the 20 random initial perturbations we tried (an example is
shown in Fig. 6). We observed the same phenomenon across

attack methods, values of ε, and defenses on CIFAR10.
More details can be found in App. I.
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Figure 6: The image shows the number of adversarial ex-
amples each of the attacks found when using the specified
number of random initial perturbations, on all 10,000 im-
ages from the testing set of CIFAR10, with ε = 16/255,
against the DSL+20 (Ding et al., 2020) defense.

7. Discussion
Here we discuss the potential to use CGD as a framework
for attacks (§7.1), e.g., with different distance metrics and
loss functions. We demonstrate one such use, where we
instantiate CGD for untargeted attacks (§7.2).

7.1. CGD as a Framework

In §6 we showed that CGD outperformed the previous best
attack in targeted tasks, with statistical significance and sub-
stantial effect size. Similarly to how Auto-PGD is a member
of the PGD family attacks, the specific attack we explore in
this paper could be viewed as member of a broader CGD
family. Auto-PGD improves the performance of PGD at-
tacks by using alternative loss functions and wisely tuning
parameters; similar tweaking could also apply to CGD at-
tacks: using alternative loss functions and wisely tuning
parameters could yield a stronger attack within the CGD
family. Meanwhile, as the loss function of CGD can be sep-
arated into two components, Lbnd and Lcls , each of those
could be tuned. We demonstrated that CGD implemented
with specific loss functions and parameters outperformed the
previous best attack; other variants of CGD could perform
better yet. CGD might also be extended to other distance
metrics besides `∞ and also to untargeted attacks. In gen-
eral, our work opens the door for future work to find stronger
attacks using CGD as a framework.
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7.2. Applying CGD to Untargeted Attacks

We demonstrated that CGD outperformed the previous best
white-box targeted attacks in §6. Here we explore an un-
targeted variant of CGD as an example of extending CGD
to other types of attacks, and, specifically, how other loss
functions can be incorporated in the general CGD approach.

Previous works find untargeted adversarial examples by
using one of several loss functions. One example is cross en-
tropy loss, which we described in §2.1: LCE = − logPy =

−Zy+log(
∑K
j=1 e

Zj ). Other work proposed the untargeted
attack version of the Difference of Logits Ratio loss (DLR
loss):

LDLR =
Zy −maxi 6=yZi
Zπ1 − Zπ3

(10)

and showed that Auto-PGD with LDLR finds more adver-
sarial examples than Auto-PGD with LCE (Croce & Hein,
2020b). Yet other work uses the untargeted version of CW
loss (Carlini & Wagner, 2017a):

LCW = −Zy +maxi 6=yZi (11)

Previous works show that by iteratively maximizing these
loss functions the adversary can find untargeted adversarial
examples (Carlini & Wagner, 2017a; Croce & Hein, 2020b).

Because the concept of staying within the `∞ distance limit
is the same in targeted and untargeted attacks, the loss com-
ponent for capturing the task of staying within the `∞ dis-
tance limit, Lcls , is the same as described in §4. Lcls de-
creases to 0 if and only if the adversarial example is within
the `∞ distance limit. Hence, we design the loss component
that captures the task of forcing misclassification, such as
the MD loss, to also decrease to 0 when the adversary suc-
ceeds. The purpose of this design is to have the overall loss
function, which is a weighted sum of the two components,
decrease to 0 if and only both tasks have been successfully
completed. To create the loss component that captures the
task of avoiding correct classification, we define a variant
of the CW loss as follows:

LCW ∗ = ReLU(Zy + δ −maxi 6=yZi) (12)

where δ is a minimal value, set to 1e−15 (see §3.2). We
replace MD loss in Alg. 1 with LCW ∗ as Lcls to obtain the
untargeted variant of the CGD attack, CGDuntarg.

Minimizing LCW ∗ achieves the same result as maximizing
LCW : when Zy ≥ maxi 6=yZi, both loss functions mini-
mize Zy −maxi6=yZi; and when Zy < maxi6=yZi, the un-
targeted attack has already succeeded. Hence, an Auto-PGD
that minimizes LCW ∗ and an Auto-PGD that maximizes
LCW behave exactly the same on each image; we report
results only for the former.

We ran Auto-PGD with LDLR, Auto-PGD with LCW ∗ , and
CGDuntarg to compare their performance. Details of the

setup can be found in App. G. On average, CGDuntarg outper-
formed Auto-PGD with LDLR and Auto-PGD with LCW ∗ .
CGDuntarg outperformed the next best method, Auto-PGD
withLCW ∗ in 28 out of the 35 sets of attempts at ε = 4/255,
in 31 out of the 35 sets of attempts at ε = 8/255, and in
all 35 sets of attempts at ε = 16/255. More details can be
found in App. H.

8. Conclusion
In this work we improved a previously established white-
box, targeted evasion attack by using a new loss function.
We also proposed a yet stronger attack that learns to ap-
proach and explore the ε-boundary. We demonstrated the
efficacy of both the new loss function and the new attack
on two datasets (CIFAR10 and ImageNet), for multiple val-
ues of ε, and against multiple defenses; in all cases, our
methods outperformed the best of the attacks we compared
against, finding targeted adversarial examples more success-
fully while taking significantly less time to run. Finally,
we showed how to use our new attack method as a gen-
eral framework for attacks and demonstrated its utility by
instantiating it into a stronger untargeted attack.
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A. The CGD algorithm

Algorithm 1 CGD

Input: x, model(·), niterations, ε, threshold,
checkpoints, target

1: x′ ← clip(x+ 2 ∗ rand(x.shape)− 1)
2: w ← 0.1
3: bndupper

i,j ,k (x )← min(1, xi,j,k + ε)

4: bnd lower
i,j ,k (x )← max(0, xi,j,k − ε)

5: for iteration← 1 to niterations do
6: if iteration ∈ checkpoints then
7: threshold← threshold/2
8: end if
9: Z ← model(x′)

10: Lcls ←
∑
iReLU(Zi + δ − Zt)

11: Overruni,j,k(x
′)← ReLU(x′i,j,k−bndupper

i,j ,k (x ))+

ReLU(bnd lower
i,j ,k (x )− x′i,j,k)

12: Lbnd ←
∑
i,j,k(Overruni,j,k(x

′)2)
13: if ∃i, j, k ∈ Overruni,j,k(x

′) > threshold then
14: w ← w/2
15: end if
16: loss← w ∗ Lcls + (1− w) ∗ Lbnd

17: gradients← ∂loss
∂x′

18: if iteration == 1 then
19: x′ ← clip(x′ − ε ∗ sign(gradients))
20: else
21: changes← Adamoptimizer(gradients)
22: x′ ← x′ − changes
23: end if
24: xtest ← clip(round(x′ ∗ 255)/255)
25: if argmax(model(xtest)) == target then
26: Returnxtest
27: end if
28: end for

Return failed attack

Alg. 1 shows the pseudocode of the Constrained Gradient
Descent (CGD) algorithm. The inputs to the algorithm are:
the benign example x; the model(·) function that emits the
logits for given inputs; the number of iterations niterations;
the ε distance; a set of constants tuned per model, threshold
and checkpoints; and the target class target. We allow the
tuning of threshold and checkpoints per model because
we are running white-box attacks and hence the adversary
has the freedom to choose the attack’s parameters per model.
All other parameters do not require tuning per model. In
line 1, we add a random initial perturbation to the benign
sample, moving it to the ε boundary. In lines 3 and 4 of
the algorithm, before we start the iterations, we compute
bndupper (x ) and bnd lower (x ). From line 6 to 8, we adjust
the threshold based on pre-set constants. We compute the
logits Z of the model regarding the current perturbation
x′ in line 9 and compute the MD loss in line 10. Then

https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1906.06316
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we compute the Overrun in line 11 and the Lbnd in line
12, which motivates the adversarial example to move to be
within the `∞ distance limit. From line 13 to line 15, we
adjust the weight w, and then use this weight to compute
the total loss as a weighted sum in line 16. We compute
the gradients from the loss function in line 17 and apply
changes from line 18 to line 23. In the first iteration, the
candidate perturbation is pushed by a distance of ε to more
quickly reach the boundary. In later iterations, the Adam
optimizer is used to reduce fluctuation. From line 24 to 27
(highlighted in pink), we perform a normal rounding check.
This rounding check enforces the successful adversarial
example to be both inside the `∞ distance limit and in 8-bit
RGB format. When the candidate perturbation is very close
to the ε boundary, clipping has minimal effects on the logits,
Lcls , and probabilities assigned to classes, meaning that an
image just outside the ε boundry is rounded to become both
within the ε boundary and potentially a successful attack.

B. Wilcoxon Signed-Rank Test
The Wilcoxon signed-rank test (Wilcoxon, 1945), is a non-
parametric test to examine the relationship between two
related paired samples. In our experiements, we ran one-
sided Wilcoxon signed-rank tests to verify if one set of
samples is greater than another with statistical significance.
While the Wilcoxon signed-rank test assumes that the two
sets differ on each pair of samples, in our case, the samples
are equal in some pairs. Previous work suggests a mitigation
to enable using the Wilcoxon signed-rank test in such cases:
using an adjusted normal approximation of the test statistic
of the Wilcoxon signed-rank test instead of using the stan-
dard test statistic to compute the p-value (Cureton, 1967),
and using the pairs that are equal to produce the rankings
but excluding them afterwards (Pratt, 1959). This approach
requires more than 25 independent trials; our data satisfiy
this requirement. In addition, to account for the multiple
tests, we always used Bonferroni correction to adjust the
confidence level α.

C. Measurement of Changes in Predictions
As we described in §3, we used the number of times that
the prediction was changed to a certain class before the per-
turbation first succeeds as a metric to capture how often the
undesirable behavior (mentioned in §3.1) of the CW loss
occurs. We used 512 images pertaining to a diversity of
classes from CIFAR10, and perturbed them while targeting
randomly picked classes. We ran Auto-PGD with ε values
from 0.1/255 to 32/255 by every 0.1/255. The results for
Auto-PGD with the CW loss are shown in Figs. 7–8, while
the results for Auto-PGD with the MD loss are shown in
Figs. 9–10. Against both DSL+20 (Ding et al., 2020) and
WRK20 (Wong et al., 2020), the MD loss reduced the maxi-

mum number of times that the prediction was changed to a
class. We also ran a Wilcoxon signed-rank test (see App. B)
to determine whether the differences between the losses
are statistically significant. Specifically, we conducted 320
statistical tests on each defense, for the 320 different values
of ε we used. To account for the multiple tests, we used
Bonferroni correction to adjust the confidence level α to
.05/320 = 0.00015625. We found that for 203 out of 320
values of ε against DSL+20 and for 309 out of 320 values
of ε against WRK20, the maximum number of times that
the prediction was changed to a class is statistical signif-
icantly smaller when using the MD loss compared to the
CW loss. Notably, this maximum number of changes is
smaller when using the MD loss for every value of ε in
[0.8/255, 16.3/255] against DSL+20, and for every value
of ε in [0.7/255, 27.3/255] against WRK20. Both ranges
include values of ε commonly used in `∞ attacks.
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Figure 7: The maximum number of times that the prediction
was changed to a class, throughout the process of perturbing
each of the 512 image before success using Auto-PGD with
CW loss against DSL+20.

D. More Evaluation Setup for Targeted
Attacks

In this section, we provide more detail about how we ex-
ecuted reproducible attacks to enable meaningful and fair
comparisons.

D.1. Datasets

In this work, we used the CIFAR10 and ImageNet datasets—
two standard datasets that are commonly used for classifica-
tion tasks. Both datasets contain colored images of objects
in 8-bit RGB format as described in §2.1. Each image in
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Figure 8: The maximum number of times that the prediction
was changed to a class, throughout the process of perturbing
each of the 512 image before success using Auto-PGD with
CW loss against WRK20.
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Figure 9: The maximum number of times that the prediction
was changed to a class, throughout the process of perturbing
each of the 512 image before success using Auto-PGD with
MD loss against DSL+20.

CIFAR10 has 32× 32 pixels, whereas we resized each im-
age in ImageNet to have 224 × 224 pixels. We evaluated
attacks on the test set of the datasets. CIFAR10 has 10,000
images in its test set and ImageNet has 50,000.
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Figure 10: The maximum number of times that the pre-
diction was changed to a class, throughout the process of
perturbing each of the 512 image before success using Auto-
PGD with MD loss against WRK20.

D.2. Benchmarks

Many defense strategies have been explored. For example,
different input transformations have been proposed to re-
move adversarial perturbations from inputs prior to classifi-
cation (e.g., (Guo et al., 2018; Liao et al., 2018; Samangouei
et al., 2018; Xu et al., 2018)). Unfortunately, the majority
of these defenses can be evaded by adaptive attacks that
craft adversarial perturbations that survive the transforma-
tions (Athalye & Carlini, 2018; Athalye et al., 2018; He
et al., 2017). Certain defenses attempt to detect adversar-
ial examples (e.g., (Feinman et al., 2017; Ma et al., 2018;
Metzen et al., 2017)). The majority of these defenses are
unable to classify adversarial examples correctly, when de-
tected. Moreover, researchers have also found that detection
methods can often be evaded by adaptive attacks (Athalye
et al., 2018; Carlini & Wagner, 2017b). Finally, certified de-
fenses provide provable accuracy guarantees on adversarial
examples (e.g., (Cohen et al., 2019; Lecuyer et al., 2019;
Raghunathan et al., 2018; Wong & Kolter, 2018; Zhang
et al., 2020)). However, these defenses are often effective
for perturbations of smaller norms than adversarial train-
ing (Lecuyer et al., 2019), or are ineffective against the threat
models we study (e.g., high-dimensional perturbations with
bounded `∞-norms) (Bai Li & Carin, 2020; Kumar et al.,
2020).

As we described in §2.3 and §5, adversarial training is
regarded as ne of the strongest defenses (Akhtar et al.,
2021), and hence we used seven pre-established adver-
sarially trained models for CIFAR10: CRS+19 (Car-
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mon et al., 2019), DSL+20 (Ding et al., 2020),
HLM19 (Hendrycks et al., 2019), SWM+20 (Sehwag et al.,
2020), WRK20 (Wong et al., 2020), WXW20 (Wu et al.,
2020) and WZY+20 (Wang et al., 2020). All of these mod-
els were trained with ε = 8/255 and are publicly available
via RobustBench (Croce et al., 2021), a standard library
for robustness evaluation of neural networks. We selected
the models using the following criteria: they rank highly on
robustness in the public RobustBench evaluation; they
have a PyTorch implementation; and they fit into the 11GB
memory of our NVIDIA GeForce RTX 2080 GPUs. These
models have have also been found to be robust in evaluations
other than RobustBench’s (Gowal et al., 2020; Rebuffi
et al., 2021). The seven models can be categorized into
four non-exclusive groups: some propose surrogate loss
functions (Ding et al., 2020; Wang et al., 2020; Wu et al.,
2020), some use pre-training or semi-supervised learning
techniques (Carmon et al., 2019; Hendrycks et al., 2019;
Wang et al., 2020), some try to wisely tune the training
process (Wong et al., 2020), and some apply pruning to
their models (Sehwag et al., 2020). Similarly to prior work
(e.g., (Song et al., 2018; Wong et al., 2020)), we evaluated at-
tacks against these models with ε = 8/255 and 16/255. We
also found two versions of SIE+20 (Salman et al., 2020), pre-
established and publicly available adversarially trained mod-
els on ImageNet—one adversarially trained with ε = 4/255
and another with ε = 8/255. We evaluated attacks against
each version of this model with the same ε with which it
was trained.

D.3. Experiment Setup

We observed that some PyTorch functions could
yield unreproducible results in different runs. To
keep our measurement results reproducible, we set
torch.backends.cudnn.benchmark to False
and torch.backends.cudnn.deterministic to
True. In addition, we found that PGD attacks, includ-
ing Auto-PGD, always start with a random perturbation and
this could slightly influence the result. Hence, we ran these
attacks multiple times, each time with a different random
seed. We also fixed the batch size so that with the same
random seed we got the same random initial perturbation.
We used a batch size of 512 images for CIFAR10 and a
batch size of 10 images for ImageNet. In addition to the
random initialization, we also picked a random target class
for each image in the testing sets of datasets which we used
to evaluate attacks. Due to limited computing resources, we
were not able to run attacks targeting every incorrect class,
especially for ImageNet which has 1,000 classes. The target
class was intentionally selected to be different from the la-
bel, the correct class of the image. We chose the difference
target offset between the target class and the correct class,

using the following formula:

target offset i = floor(rand()∗ (Nclasses−1))+1 (13)

where i is the index of images in the testing set, i ∈
[0, 10000) for CIFAR10 and i ∈ [0, 50000) for ImageNet,
and Nclasses is the number of classes, 10 for CIFAR10 and
1,000 for ImageNet. The rand() function generates a float
∈ [0, 1). The target class was

ti = (yi + target offset i) mod Nclasses (14)

for i ∈ [0, Nimages). We only used one random seed (specif-
ically, 0) for the target offset in CIFAR10, as on average
there are 10000/(9 ∗ 10) images in each source-target class
pair, whereas we used five random seeds (specifically, 0–4)
for the target offset of the ImageNet dataset, as 50,000
images cannot cover all the 999×1000 source-target class
pairs. We also observed that some class pairs in ImageNet
(e.g., “African crocodile” and “American alligator”) are
closer than other class pairs (e.g., “African crocodile” and
“thunder snake”), and are significantly more easy to perturb
into each other. Random numbers were generated as a vec-
tor of length 10,000 for CIFAR10 and 50,000 for ImageNet.
Hence, the target offset was the same for the same image
with the same random seed, but target offsets was not the
same across all images when we used the same random
seed.

E. Performance of Targeted Attacks
As we demonstrated in §6.1, on average, Auto-PGD with
MD loss finds more adversarial examples than Auto-PGD
with all three other loss functions, and CGD attacks per-
forms better than Auto-PGD with MD loss. We observe
similar results across datasets, values of ε, and defenses, as
we show in Figs. 11–13.

F. Statistical Tests On the Performance of
Targeted Attacks

As we described in §6.2 and App. B, we used one-sided
Wilcoxon signed-rank tests(Wilcoxon, 1945) to compare the
performance between Auto-PGD with MD loss and CGD,
whose results are shown in Tab. 2. We also compared the
performance between CGD and the best performing attack
among Auto-PGD using the DLR loss, CW loss, and CE
loss, whose results are shown in Tab. 3. We conducted 16
statistical tests in each group, for the 16 different combina-
tions we had. Thus, to account for the multiple tests, we
used Bonferroni correction to adjust the confidence level α
to .05/16 = 0.003125.
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Figure 11: This figure shows the relative improvement in
the number of adversarial examples found by attacks on
different defenses compared to the worst-performing attack.
Experiments were performed using 50,000 images from the
testing set of ImageNet. We ran attacks using ε = 8/255
against SIE+20 (Salman et al., 2020), five different random
initial perturbations with seeds 0–4, and five different ran-
dom target offsets with seeds 0–4. The result is normalized
by the mean of the worst performing method for each target
offset.

G. More Evaluation Setup for Untargeted
Attacks

We evaluated untargeted attacks on the CIFAR10 dataset.
We use the `∞ distance metric for these attacks as we did
for targeted attacks. We use three values of ε: 4/255, 8/255,
and 16/255. We use the same seven defenses (Carmon et al.,
2019; Ding et al., 2020; Hendrycks et al., 2019; Sehwag
et al., 2020; Wang et al., 2020; Wong et al., 2020; Wu et al.,
2020) as we did in App. D, again trained with ε = 8/255
from robust-bench (Croce et al., 2021), as benchmarks to
evaluate untargeted attacks. We evaluated untargeted attacks
by the number of adversarial examples they found within
the `∞ distance limit. We ran all attacks, again with 100
iterations as in its default configuration. We ran each attack
with five different random initial perturbations, using seeds
0–4, and a batch size of 512.

H. Performance of Untargeted Attacks
As we introduced in §7.2, on average, CGDuntarg performed
better than Auto-PGD with LDLR and Auto-PGD with
LCW ∗ . Figs. 14–16 show similar results when we use dif-
ferent values of ε.
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Figure 12: This figure shows the relative improvement in
the number of adversarial examples found by attacks on
different defenses compared to the worst-performing attack.
Experiments were performed using 50,000 images from the
testing set of ImageNet. We ran attacks using ε = 4/255
against SIE+20 (Salman et al., 2020), five different random
initial perturbations with seeds 0–4, and five different ran-
dom target offsets with seeds 0–4. The result is normalized
by the mean of the worst performing method for each target
offset.

I. Uniqueness of Attacks
As we described §6.4, among the attack methods we tried,
each of them found a slightly different set of successful
adversarial examples, and each attack found some adversar-
ial examples which any of the other methods did not. We
observe the same phenomena across attack methods, values
of ε, defenses, and datasets, as shown in Figs. 17–33.

At the same time, when the same attack method is given
different random initial perturbations, the attack always
found a slightly different set of adversarial examples, within
the 20 random initial perturbations we tried. We observe the
same phenomena across attack methods, values of ε, and
defenses on CIFAR10, as shown in Figs. 34–46.

J. Gradient Based Quantization
Bonnet et al. proposed gradient based quantization, an ap-
proach to round the current perturbation along the sign of
the gradients (Bonnet et al., 2020). We ran experiments with
gradient-based quantization, using the formula

xtest = round(x′i ∗255+sign(
∂L(x′i, t)

∂x′i
)∗ .499999)/255
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Figure 13: This figure shows the relative improvement in
the number of adversarial examples found by attacks on
different defenses compared to the worst-performing attack.
Experiments were performed using 10,000 images from the
testing set of CIFAR10. We ran attacks using ε = 8/255,
20 different random initial perturbations with seeds 0–19,
and a fixed random target offset with seed 0. The result is
normalized by the mean of the worst performing method
against each model.

in addition to the quantization described in §2.1, and de-
clared an attack successful if either of the quantizations
produced a perturbation that caused the model to predict the
target class in any iteration. We ran all attacks at ε = 16/255
against defenses on CIFAR10, with the same setup as de-
scribed in §5. The results are shown in Fig. 47. With an
additional 8.9–13.1% time cost (measured using the same
approach as in §6.3), the attacks succeed only by an addi-
tional 0.00–0.04%; the relative relationship between success
rates of different attacks remains the same.

Table 2: This table shows the result of the Wilcoxon signed
rank test with an adjusted normal approximation for the
null hypotheses that Auto-PGD using the MD loss per-
formed equal or better than CGD in each combination
of value of ε, dataset, and defense that we tried. The
defenses we used include DSL+20 (Ding et al., 2020),
WRK20 (Wong et al., 2020), HLM19 (Hendrycks et al.,
2019), WZY+20 (Wang et al., 2020), SWM+20 (Sehwag
et al., 2020), CRS+19 (Carmon et al., 2019), WXW20 (Wu
et al., 2020), and SIE+20 (Salman et al., 2020). We follow
the common practice to include the Wilcoxon statistics along
with the p-values. Test results where p-values are smaller
than α are shown in bold. We reject the null hypothesis in
11 of the 16 tests.

dataset defense l∞ distance limit
ε = 8/255 ε = 16/255

W statistic p value W statistic p value
DSL+20 2456346.0 2e-10 5284845.5 0.09
WRK20 518476.5 1e-6 2539938.5 3e-8

CIFAR10 HLM19 259521.0 0.02 2377428.0 0.02
WZY+20 279327.0 0.07 3297549.0 2e-12
SWM+20 259521.0 4e-3 2247924.0 2e-5
CRS+19 299366.5 3e-3 2526231.0 1e-5
WXW20 249649.0 3e-3 1788273.0 2e-9

ε = 4/255 ε = 8/255
ImageNet W statistic p value W statistic p value

SIE+20 9621163.5 7e-12 22184577.0 2e-13
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Figure 14: This figure shows the relative improvement in the
number of adversarial examples found by untargeted attacks
on different defenses compared to the worst-performing
attack. Experiments were performed using 10,000 images
from the testing set of CIFAR10. We ran attacks using
ε = 4/255, and five different random initial perturbations
with seeds 0–4. The result is normalized by the mean of the
worst performing method against each model.
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Table 3: This table shows the result of the Wilcoxon signed
rank tests with an adjusted normal approximation for the
null hypotheses that the best performance among Auto-
PGD using the DLR loss, CW loss and CE loss performed
equal or better than the performance of CGD on each im-
age across all values of ε, datasets, and defenses. The
defenses we used include DSL+20 (Ding et al., 2020),
WRK20 (Wong et al., 2020), HLM19 (Hendrycks et al.,
2019), WZY+20 (Wang et al., 2020), SWM+20 (Sehwag
et al., 2020), CRS+19 (Carmon et al., 2019), WXW20 (Wu
et al., 2020), and SIE+20 (Salman et al., 2020). We follow
the common practice to include the Wilcoxon statistics along
with the p-values. Test results where p-values are smaller
than α are shown in bold. We reject the null hypothesis in
all 16 tests.

dataset defense l∞ distance limit
ε = 8/255 ε = 16/255

W statistic p value W statistic p value
DSL+20 2311330.5 1e-6 6709608.5 7e-10
WRK20 657798.5 3e-8 3576641.5 7e-26

CIFAR10 HLM19 538492.0 2e-8 3271871.0 4e-14
WZY+20 508499.5 2e-5 4021878.0 9e-25
SWM+20 508657.5 1e-8 2540675.0 2e-9
CRS+19 508587.0 1e-6 2731369.5 9e-7
WXW20 498731.5 1e-8 2004237.0 1e-13

ε = 4/255 ε = 8/255
ImageNet W statistic p value W statistic p value

SIE+20 19071030.0 3e-55 54798304.5 1e-168
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Figure 15: This figure shows the relative improvement in the
number of adversarial examples found by untargeted attacks
on different defenses compared to the worst-performing
attack. Experiments were performed using 10,000 images
from the testing set of CIFAR10. We ran attacks using
ε = 8/255, and five different random initial perturbations
with seeds 0–4. The result is normalized by the mean of the
worst performing method against each model.
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Figure 16: This figure shows the relative improvement in the
number of adversarial examples found by untargeted attacks
on different defenses compared to the worst-performing
attack. Experiments were performed using 10,000 images
from the testing set of CIFAR10. We ran attacks using
ε = 16/255, and five different random initial perturbations
with seeds 0–4. The result is normalized by the mean of the
worst performing method against each model.
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Figure 17: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 8/255 against the DSL+20 (Ding et al.,
2020) defense, rounded to whole numbers.
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Figure 18: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set
of CIFAR10 using ε = 8/255 against the WRK20 (Wong
et al., 2020) defense, rounded to whole numbers.
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Figure 19: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set
of CIFAR10 using ε = 16/255 against the WRK20 (Wong
et al., 2020) defense, rounded to whole numbers
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Figure 20: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 8/255 against the HLM19 (Hendrycks
et al., 2019) defense, rounded to whole numbers.
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Figure 21: This image shows the average number of success-
ful adversarial examples found by attack A but not by attack
B in each set of 10,000 attempts on the testing set of CI-
FAR10 using ε = 16/255 against the HLM19 (Hendrycks
et al., 2019) defense, rounded to whole numbers.
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Figure 22: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set
of CIFAR10 using ε = 8/255 against the WZY+20 (Wang
et al., 2020) defense, rounded to whole numbers.
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Figure 23: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 16/255 against the WZY+20 (Wang
et al., 2020) defense, rounded to whole numbers.
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Figure 24: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 8/255 against the SWM+20 (Sehwag
et al., 2020) defense, rounded to whole numbers.
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Figure 25: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 16/255 against the SWM+20 (Sehwag
et al., 2020) defense, rounded to whole numbers.
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Figure 26: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 8/255 against the CRS+19 (Carmon
et al., 2019) defense, rounded to whole numbers.
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Figure 27: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 16/255 against the CRS+19 (Carmon
et al., 2019) defense, rounded to whole numbers.
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Figure 28: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 8/255 against the WXW20 (Wu et al.,
2020) defense, rounded to whole numbers.
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Figure 29: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 10,000 attempts on the testing set of
CIFAR10 using ε = 16/255 against the WXW20 (Wu et al.,
2020) defense, rounded to whole numbers.
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Figure 30: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 50,000 attempts on the testing set
of ImageNet using ε = 4/255 against the SIE+20 (Salman
et al., 2020) defense, rounded to whole numbers.
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Figure 31: This image shows the average number of suc-
cessful adversarial examples found by attack A but not by
attack B in each set of 50,000 attempts on the testing set
of ImageNet using ε = 8/255 against the SIE+20 (Salman
et al., 2020) defense, rounded to whole numbers.
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Figure 32: This is the average number of successful adver-
sarial examples found by an attack but not by any of other
attack methods, against each defense in each set of 10,000
attempts on the testing set of CIFAR10 using ε = 8/255,
rounded to whole numbers.
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Figure 33: This is the average number of successful adver-
sarial examples found by an attack but not by any other
attack methods, against the SIE+20 (Salman et al., 2020)
defense in each set of 50,000 attempts on the testing set of
ImageNet, no decimals are kept.
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Figure 34: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 8/255, against the DSL+20 (Ding et al., 2020) defense.
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Figure 35: The image shows the number of adversarial
examples each of the attacks found when they are allowed to
use the specified number of random initial perturbations, on
all 10,000 images from the testing set of CIFAR10, with ε =
16/255, against the WRK20 (Wong et al., 2020) defense.
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Figure 36: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 8/255, against the WRK20 (Wong et al., 2020) defense.
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Figure 37: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 16/255, against the HLM19 (Hendrycks et al., 2019)
defense.
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Figure 38: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 8/255, against the HLM19 (Hendrycks et al., 2019)
defense.
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Figure 39: The image shows the number of adversarial
examples each of the attacks found when they are allowed to
use the specified number of random initial perturbations, on
all 10,000 images from the testing set of CIFAR10, with ε =
16/255, against the WZY+20 (Wang et al., 2020) defense.
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Figure 40: The image shows the number of adversarial
examples each of the attacks found when they are allowed to
use the specified number of random initial perturbations, on
all 10,000 images from the testing set of CIFAR10, with ε =
8/255, against the WZY+20 (Wang et al., 2020) defense.

1 3 5 7 9 11 13 15 17 19
number of random initial perturbations

4650

4700

4750

4800

4850

4900

4950

5000

nu
m

be
r o

f a
dv

er
sa

ria
l e

xa
m

pl
es

 fo
un

d

Auto-PGD with CE loss
Auto-PGD with DLR loss
Auto-PGD with CW loss
Auto-PGD with MD loss
CGD

Figure 41: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 16/255, against the SWM+20 (Sehwag et al., 2020)
defense.
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Figure 42: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 8/255, against the SWM+20 (Sehwag et al., 2020)
defense.
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Figure 43: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 16/255, against the CRS+19 (Carmon et al., 2019)
defense.
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Figure 44: The image shows the number of adversarial
examples each of the attacks found when they are allowed to
use the specified number of random initial perturbations, on
all 10,000 images from the testing set of CIFAR10, with ε =
8/255, against the CRS+19 (Carmon et al., 2019) defense.
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Figure 45: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 16/255, against the WXW20 (Wu et al., 2020) defense.
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Figure 46: The image shows the number of adversarial
examples each of the attacks found when they are allowed
to use the specified number of random initial perturbations,
on all 10,000 images from the testing set of CIFAR10, with
ε = 8/255, against the WXW20 (Wu et al., 2020) defense.
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Figure 47: This figure shows the relative improvement in
the number of adversarial examples found by attacks on
different defenses compared to the worst-performing attack,
when all attacks are allowed to perform one more forward
propagation to verify if a gradient based quantized version of
the current perturbation would lead to success. Experiments
were performed using 10,000 images from the testing set of
CIFAR10. We ran attacks using ε = 16/255, 20 different
random initial perturbations with seeds 0–19, and a fixed
random target offset with seed 0. The result is normalized
by the mean of the worst performing method against each
model.


