
CaFA: Cost-aware, Feasible Attacks With Database Constraints
Against Neural Tabular Classifiers

Matan Ben-Tov∗, Daniel Deutch∗, Nave Frost†, and Mahmood Sharif∗
∗Tel Aviv University †eBay

Email: matanbentov@mail.tau.ac.il, {danielde, mahmoods}@tauex.tau.ac.il, nafrost@ebay.com

Abstract—This work presents CaFA, a system for Cost-aware
Feasible Attacks for assessing the robustness of neural tab-
ular classifiers against adversarial examples realizable in the
problem space, while minimizing adversaries’ effort. To this
end, CaFA leverages TabPGD—an algorithm we set forth to
generate adversarial perturbations suitable for tabular data—
and incorporates integrity constraints automatically mined by
state-of-the-art database methods. After producing adversarial
examples in the feature space via TabPGD, CaFA projects
them on the mined constraints, leading, in turn, to better
attack realizability. We tested CaFA with three datasets and
two architectures and found, among others, that the constraints
we use are of higher quality (measured via soundness and com-
pleteness) than ones employed in prior work. Moreover, CaFA
achieves higher feasible success rates—i.e., it generates adver-
sarial examples that are often misclassified while satisfying
constraints—than prior attacks while simultaneously perturb-
ing few features with lower magnitudes, thus saving effort and
improving inconspicuousness. We open-source CaFA,1 hoping
it will serve as a generic system enabling machine-learning
engineers to assess their models’ robustness against realizable
attacks, thus advancing deployed models’ trustworthiness.

1. Introduction

Evasion attacks producing adversarial examples—
slightly but strategically manipulated variants of benign
samples inducing misclassifications—have emerged as a
technically deep challenge posing risk to safety- and
security-critical deployments of machine learning (ML) [6].
For example, adversaries may inconspicuously manipu-
late their appearance to circumvent face-recognition sys-
tems [15], [41], [42]. As another example, attackers may in-
troduce seemingly innocuous stickers to traffic signs, leading
traffic-sign recognition models to err [20]. Such adversarial
examples have also become the de facto means for assessing
ML models’ robustness (i.e., ability to withstand inference-
time attacks) in adversarial settings [6], [38]. Nowadays, nu-
merous critical applications employ ML models on tabular
data, including for medical diagnosis, malware detection,
fraud detection, and credit scoring [7]. Still, adversarial
examples against such models remain underexplored.
1. https://github.com/matanbt/attack-tabular

isMailto
PctNull

Hyperlinks
PctExt

Hyperlinks
…

0 1.0 0.0 …

Perturbed [#2]

Evasion 
Attack 

Phishing website

Modified website, 
evaded the detector

BENIGN

PHISHING

Feature Space
Original [#1]

Problem Space

Perturbed & Infeasible [#3]

BENIGN

𝑥#3 ⊭ ∀𝑥: 𝑥. 𝑖𝑠𝑀𝑎𝑖𝑙𝑡𝑜 ∈ 0,1 𝑥#3 ⊭ ∀𝑥: 𝑥. 𝑝𝑐𝑡𝑁𝑢𝑙𝑙𝐻𝑦𝑝𝑒𝑟𝑙𝑖𝑛𝑘𝑠 = 1.0 
→ 𝑥. 𝑝𝑐𝑡𝐸𝑥𝑡𝐻𝑦𝑝𝑒𝑟𝑙𝑖𝑛𝑘𝑠 = 0.0

Structure-constraints violation

Unimplementable 0.5 1.0 0.2 …

1 1.0 0.0 …

Phishing 
Detector

Relation-constraints violation 
(can be expressed by DCs)

Figure 1: Adversarial examples in the problem space (e.g.,
a phishing website imitating Google) and the feature space
(i.e., feature vectors serving as inputs to ML models). The
original feature vector (#1) represents a website correctly
detected by ML-based phishing detection. The adversary
finds a minimal perturbation (#2) realizable as a problem-
space instance while misleading the detector. Attacks, how-
ever, may also fail to satisfy data-integrity constraints (#3),
rendering them unrealizable in the problem space. Different
types of data-integrity constraints exist, including structure
(defined by features’ domains) and relation (defined by
relations between samples and features) constraints.

In the tabular domain, ML models classify problem-
space artifacts (e.g., phishing pages or malicious programs)
based on their feature representations (e.g., [13], [26], [33],
[38]), posing challenges to evaluating robustness against
practical attacks realizable in the problem space (i.e., via
an artifact causing misclassification). Some approaches for
evaluating robustness against practical attacks operate di-
rectly in the problem space by manipulating (realizable)
artifacts directly to evade ML models (e.g., [20], [30], [41],
[42], [47]). For instance, some attacks suggest means to
strategically transform malicious programs such that their
features would mislead malware detectors [30], [47]. These
approaches, however, are domain-specific, rendering them
unsuitable for assessing robustness across multiple domains.
Namely, to evaluate robustness against practical attacks in
domains not previously studied, one still needs to invest
manual effort and rely on domain expertise to develop an
attack for the specific domain [21], [28].

https://github.com/matanbt/attack-tabular


In contrast, some techniques generate adversarial exam-
ples in the feature space to assess model robustness [38].
These, however, often do not accurately reflect models’
robustness in practice, as they produce feature changes
not realizable in the problem space due to violating data-
integrity constraints [38] (Fig. 1). While approaches for
incorporating constraints—e.g., in Valiant’s boolean con-
junctive normal form (CNF) [43], [49]—exist, as we show
(§6.1 and §6.6), such constraints may lack soundness (i.e.,
adversarial examples satisfying the constraints often violate
realizability), and the attacks have limited success, leading
to misapproximation of true robustness.

Effort minimization poses another challenge for attacks
on tabular data. Specifically, adversaries typically seek to
minimize adversarial perturbations of original samples to
maintain attack inconspicuousness, thus generating harder-
to-detect adversarial examples (e.g., [22], [25], [42], [48]).
Furthermore, as adversaries are typically rational and eco-
nomically motivated [23], minimizing adversarial perturba-
tions can also help minimize attacks’ (monetary) costs [25].
Certain approaches incorporate domain knowledge, assign-
ing monetary value to perturbations of different feature
types [25]. These, however, cannot be applied generically
across domains. More generic approaches limit the extent
to which features can be perturbed (i.e., perturbations’ l∞-or l2-norms) but may allow many features to be manipulated
and ignore the heterogeneity of features often encountered
in tabular data (e.g., binary vs. continuous features covering
large ranges) [46]. Other approaches limit the amount of
features that can be manipulated (i.e., perturbations’ l0-norms) but may allow features to be manipulated to an arbi-
trary extent [8], [32], [43], [44]. Thus, there remains a need
for approaches minimizing adversarial-example-generation
effort in a generic manner well-suited for tabular data.

To address these challenges, we propose CaFA, a three-
stage system for Cost-aware Feasible Attacks to enable
generic evaluation of ML models ingesting tabular data
against evasion (§4). CaFA automatically mines so-called
denial constraints (DCs) via databases-based techniques [14]
identifying relations between features and samples. Then,
CaFA perturbs samples via TabPGD—an algorithm we
offer to generate evasive samples in feature space while
satisfying structure constraints defined by feature developers
and minimizing a newly introduced cost metric accounting
for the extent to which features are manipulated and the
number of features perturbed. Lastly, CaFA projects the
evasive samples on the mined DCs as a mean to comply with
genuine data-integrity constraints and ensure realizability.
We conducted experiments with three datasets and two
neural network (NN) architectures, exploring the quality of
the mined constraints and the feasible success rates (i.e., por-
tion of adversarial samples satisfying the mined constraints)
attained by CaFA. Our findings show that:
∙ DCs better balance soundness (i.e., out-of-domain sam-
ples violate constraints) and completeness (i.e., in-domain
samples satisfy constraints) than Valiant’s constraints with
tractable parameterization, rendering them more adequate
for robustness evaluation against practical attacks (§6.1).

∙ CaFA, with DCs employed, attains higher feasible success
rates (of over than ×25%; §6.2), while perturbing relatively
limited number of features to fewer extents (§6.3) than
prior attacks. CaFA also has markedly faster run times
than attacks with competitive feasible success rates (§6.4).

∙ When DCs are not incorporated, TabPGD with Valiant’s
constraints employed attained significantly higher feasible
success rates than previously found (87.6% vs. ≤60.0%),
countering prior belief that integrating Valiant’s integrity
constraints harms attack success [43] (§6.5).

∙ In a realistic phishing-page detection setting, adversarial
examples satisfying the mined DCs found by CaFA could
be realized in the problem space more successfully than
ones found via prior techniques (§6.6). Intuitively, as the
databases community pushes the boundaries of constraint
mining, yielding constraints with enhanced completeness
and soundness, CaFA’s ability to assess robustness against
practical attacks would also improve.
Next, we discuss related work and background (§2)

and our threat model (§3) before presenting our technical
approach (§4), and results (§5–6). We wrap up with a
discussion (§7) and a conclusion (§8).

2. Background and Related Work

2.1. Evasion Attacks

Our work studies evasion attacks, popularized by the
work of Biggio et al. [5] and Szegedy et al. [48]. In these
attacks, adversaries modify inputs at inference time, creat-
ing so-called adversarial examples, to mislead ML models.
Various methods with varied assumptions (e.g., full, white-
box vs. limited, query-only, black-box access) for generating
adversarial examples have been proposed [6], [11], [16],
[31], [35], [36]. A common method that serves as the
bedstone for state-of-the-art attacks is Projected Gradient
Descent (PGD) [31]. To produce adversarial examples, PGD
iteratively modifies samples in the direction of the gradient
while limiting the magnitude of the perturbation. Concretely,
given a model with a loss function L and a sample x of class
y, PGD iteratively calculates:

x′(i+1) ∶= x′(i) + Π(� ⋅ sign(∇xL(x′(i), y)))
where x′(i) is the perturbed sample in the i-th iteration
(x′(0) = x), Π is a function projecting samples per a budget
(e.g., clipping to an l∞-norm �-ball centered at x), and � is
a step size. We propose a modification of PGD better suited
for misleading models classifying tabular data (§4.2).
2.2. Challenges of Feature-Space Attacks

To evade ML models in practice, adversaries need to
modify problem-space artifacts to induce misclassifications
(e.g., altering phishing websites to evade detection) [38].
To the best of our knowledge, there exists no technique
capable of generating problem-space attacks in a generic
way, across domains. Consequently, domain-specific attacks



for generating adversarial examples in the problem space
are constantly being proposed, even when attacks in closely
related domains already exist. Indeed, such attacks have
been proposed for domains ranging from malicious PDF
detection [52] to malware detection [47], and from phishing
detection [34] to traffic-sign recognition [20].

As a generic alternative to problem-space attacks, one
may generate adversarial examples in the feature space that
can be later mapped to problem-space instances. Such an
approach faces two primary challenges. First, feature-space
attacks are often unrealizable in the problem space [38].
This is often due to violating data-integrity constraints not
accounted for during adversarial example generation (e.g.,
see example in §2.3). While specific attempts to produce
realizable adversarial examples in the feature space exist
(e.g., [21], [22]), they usually rely on domain expertise to
define permissible perturbation ensuring the evasive features
are realizable, rendering them non-generic. Moreover, as
we find (§6.2), the heterogeneous features with varying
scales and types (e.g., categorical and continuous) hinder
the success of standard attacks used in prior work. Second,
feature-space attacks typically require high adversarial ef-
fort, either due to manipulating many features (mainly, when
minimizing l2- or l∞-norms) [46], or due to manipulating
a few features by significant amounts (when minimizing
l0-norm) [8], [32], [43], [44]. This, in turn, renders ad-
versarial examples easy to detect [20], [22], [42], and may
increase the monetary cost of crafting them in the problem
space [25]. As mentioned above (§1), this work seeks to
overcome these challenges.
2.3. Data-Integrity Constraints

Identifying and accounting for feature-space constraints
in attacks can help improve realizability. In our work, we
capture feature-space constraints with the known structural
limitations of the feature space, and with the integrity
constraints learned from the dataset itself, both are then
integrated into our attack. Further, we evaluate and compare
integrity-constraint sets by measuring the extent of viola-
tions detected (i.e. soundness) and the extent of in-domain
samples admitted (i.e. completeness) (see §5.1). We focus
on two constraint types—structure and relation constraints.
2.3.1. Structure Constraints. Non-realizability sometimes
stems from violations of basic feature-space structural prop-
erties. For instance, in our example (Fig. 1), x3.isMailto =
0.5, while isMailto is a binary feature, stating whether the
HTML uses the mailto function or not. Thus, it is unclear
how x3 can be transformed, if at all, to an evasive HTML in
the problem space. To address these kind of violations, we
specify the type of each feature, which can be ordinal, con-
tinuous, or categorical. For each feature, we then define a
permissible domain (i.e., range or set of values). Additional
structure constraints may stem from the feature processing
(e.g., from one-hot encoding of categorical features). Such
structure constraints can be typically derived from the map-
ping defined during feature engineering.

2.3.2. Relation Constraints. Non-realizability may also
arise from violations of semantic relations between features.
For instance, in our example (x3 in Fig. 1), while the
proportion of empty links (pctNullHyperlinks) is 100%,
the proportion of external links (pctExtHyperlinks) is 20%,
which is impossible for real-world HTMLs. Preventing this
type of complex cross-feature violations requires expressive
modeling. We employ the highly expressive Denial Con-
straints (DCs) [14] to capture relation constraints. We also
refer to and compare with Valiant’s constraints [49].

Valiant’s Constraints. Valiant’s PAC learning algo-
rithm [49] derives a set of boolean constraints, as CNFs,
from a given dataset. The algorithm and its constraints were
previously used to capture domain constraints by Sheatsley
et al. [43]. In this work, we employ Valiant’s constraints as
a baseline for feature-space constraints (§5.4).

Denial Constraints. DCs are widely used and provably
expressive type of data-integrity constraints (e.g., DCs can
express the most commonly used constraint types [14],
[29]). DCs apply to pairs of samples in the dataset and are
composed of negated conjunctions of predicates. Namely, a
DC expresses a set of predicates that cannot hold together
for a pair of samples. The set of possible DCs can be
formalized as:
{

∀x, x′ ∈ X.¬

(

⋀

p∈P
p

)

∣ P ⊂ Ψ

}

s.t. Ψ ∶=
{(

xi ⋄ x
′
j

)

∣ ⋄ ∈ {=,≠, <, >,≤,≥}, i, j ∈ [d]
}

where Ψ is the set of possible predicates, which can vary
in different flavors of DCs. Each predicate includes a main
tuple, x, the other tuple x′, and an operator between these
tuples, ⋄. The set of possible operators may naturally differ
between features (e.g., categorical features can only use the
operators =,≠). Using this definition, DCs can also express
the relation constraint violated in Fig. 1 by instantiating
the other tuple values as constant operands. Due to their
expressivity, we employ DCs as to capture feature-space
relation constraints.

Approaches to mining constraints from a given dataset
can be roughly divided into two. The first mines hard con-
straints, which requires the mined constraints to hold for all
samples in the learned set. The other, more expressive type
of constraints, namely, soft constraints, allows small viola-
tion rates in the learned set. In contrast to other constraints
mining algorithms—such as Valiant’s algorithm [49]—that
mine hard constraints, we leverage algorithms for mining
soft DCs due to their lower sensitivity to malformed or
anomalous samples [29], [51].

2.4. Existing Attacks on Tabular Datasets

Adversarial examples in the tabular domain have gained
an increasing attention in recent years. Still, these remain
relatively under-explored compared to attacks in the vision
and text domains. Tab. 1 summarizes and compares prior
work and ours, focusing on the aforementioned challenges.



Work
Criteria Setting Constraints Cost Domain-General? Open Source?Structural? Relational? Automated Mining? Type Automated?

Ballet et al. [3] White-box ◌ ◌ - Feature importance ● ● ●

Bostani et al. [8] White-box ●
●

(via statistical correlations)
●

(OPF algorithm) l0 ●
◌

(only binary features) ●

Cartella et al. [12] Black-box ◒ ◌ - Feature importance ● ● ◌

Keeriv et al. [25] Black-box ● ◌ - Monetary cost ◌ ● ◌

Mathov et al. [32] Black-box ●
◒

(via trained encoder model) ● l0 ● ● ◌

Sheatsley et al. [43] White-box ●
●

(Valiant’s)
●

(Valiant’s) l0 ● ● ◌

Sheatsley et al. [44] White-box ● ●
◒

(manual & heuristics) l0 ● ● ◌

Simonetto et al. [46] White-box (C-PGD) ● ● ◌ l∞∕l2 ● ● ●

Simonetto et al. [46] Grey-box (MoEvA2) ● ● ◌ l∞∕l2 ● ● ●

CaFA (ours) White-box ●
●

(DCs)
●

(FastADC [51]) standardized-l∞ + l0 ● ● ●

TABLE 1: Comparing prior attacks on tabular data in terms of incorporating constraints for realizability, attack-cost
minimization, generality across feature domains, and open-source availability. Each cell is marked to denote whether attacks
support (●), partially support (◒), or do not support (◌) certain properties.

Realizability Through Constraints. Previous works on
tabular attacks acknowledge the importance of adhering to
constraints imposed by the problem-space when crafting
adversarial samples [8], [32], [43], [44]. Relatedly, an anal-
ogous claim was made for finding better counter-factual
examples by Deutch and Frost [19]. Most prior attacks have
focused on structure constraints, whose significance was also
discussed by Mathov et al. [32].

While many efforts acknowledge relation constraints,
only a few suggested automatic and general schemes uti-
lizing them (Tab. 1). Notably, Sheatsley et al.’s closely
related work [43] uses constraints mined by Valiant’s al-
gorithm [49]. They incorporate the constraints into their
attacks, for which they report low rates of misclassified ad-
versarial samples, thus arguing that data-integrity constraints
increase robustness. We later show findings contradicting
Sheatsley et al.’s (§6.5). Moreover, we argue that DCs are
better aligned with the genuine problem-space constraints
relative to Valiant’s constraints (§6.6).

There are several ways to integrate feature-space con-
straints into attacks. Simonetto et al. [46] minimize a penalty
associated with the constraints to improve adversarial exam-
ples’ compliance. Another option is applying SAT solvers
to project adversarial examples onto the constrained feature
space [43], [46]; however, this approach demonstrated poor
feasible success rates [43]. In this work, we also leverage
SAT solvers, but precede projection with an attack well-
suited for tabular data (§4.2) and employ new heuristics
during projection to preserve misclassification while si-
multaneously satisfying constraints (§4.3). Our experiments
demonstrate that, prior to projection on constraints using
solvers, our approach already produces fewer violations of
relation constraints than past attacks, lending itself to higher
feasible success rates after projection (§6.2).

Adversarial Effort (Cost). The literature varies in its
definition of cost for tabular adversarial example attacks.
Some efforts adopt metrics commonly used in computer
vision (l2- or l∞-norms) [46]; some argued for the suit-
ability of the l0 cost for tabular data [32], [43], [44]; while

others formed novel cost measures (e.g., feature-importance-
based cost [3], [12]). Keeriv et al. [25] offered a nuanced
discussion on the importance of cost in tabular attacks,
distinguishing it from the imperceptibility goal in the vision
domain and describing it as the financial cost of the attack.
Accordingly, to bound costs, they require manually defined
financial costs for each feature. Their interpretation and
incorporation of cost in the attack is conceptually close to
ours, albeit our attack’s cost is automatically derived.

Overall, as can be seen from Tab. 1, our proposed sys-
tem, CaFA, is the first that assesses robustness to realizable
attacks by incorporating constraints while simultaneously
minimizing adversarial effort automatically and generically
across domains, regardless of feature types. As our experi-
ments show (§5–6), CaFA also attains higher attack success-
rates at lower costs than leading attacks, providing more
reliable robustness estimation.

3. Threat Model

In this paper, we study white-box feature-space attacks
incorporating learned constraints to produce feasible (in
terms of the chosen constraint set) and cost-aware adver-
sarial examples. We focus on targeting Neural Network
(NN) models, due to their popularity [43], performance [2],
and other desirable properties (e.g., lending themselves to
distributed training and self-supervised learning) [7].

We study adversaries targeting NN-based tabular data
classifiers, denoted by M ∶ X → Y , where X ⊆ ℝd is
the feature space and Y is the label space. X is composed
of heterogeneous features, each from a different (possibly
dependent) unknown distribution. We assume adversaries
possess a sample x ∈ X they seek to misclassify and a
corresponding label y ∈ Y .

We consider a white-box setting where the attacker
knows the classifier’s architecture. The attacker also has
access to the inherent structure constraints of X defined
during feature engineering, as well as to a sample dataset for
mining relation constraints. These assumptions, considering



Figure 2: CaFA’s full flow, including
the offline phase—where CaFA mines
feature-space constraints (§4.1)–and the on-
line phase–where CaFA incorporates con-
straints when generating adversarial exam-
ples. In the online stage, we initially find
adversarial perturbations that both comply
with the structure constraints and mislead
the model (§4.2). Then, we project the ad-
versarial sample to comply with the mined
relations constraints (e.g., DCs) (§4.3).

Mine
Relation Constraints

Project onto 
constrained space

Valiant’s

Structure Constraints
(available/extracted)

Perturb
while enforcing structure-
constraints and cost-ball, 

minimize ℓ𝟎

SAT-Solver (Z3)
Sample

in feature-space

Offline   Online

Adv Sample
in feature-space

𝑿𝒕𝒓𝒂𝒊𝒏

Tab-PGD

Tab-CW-ℓ𝟎

White-box access 
to (NN) model

Access to
training-set

Ranking 
& 

Pruning

DCs 
(via Fast-ADC)

the worst-case adversary, are standard and common in the
literature (e.g., [4], [10], [45]).

The adversary’s primary goal, given x and y, is to craft
a realistic feature-space instance misleading the ML model.
Such instance can be found through a feature-space attack,
with the following objective:

Find � ∈ ℝd

s.t. M (x + �) ≠ y, (x + �) ⊧ T ,
Cost(�) ≤ B

Namely, the adversary aspires to find a feature-space per-
turbation (�) that modifies the targeted sample (x) to be
misclassified by the model; the modified sample must be
feasible under the feature-space constraints (T ), lending the
sample to better problem-space realizability; and the modifi-
cation of the original problem-space sample should involve
minimal costs (i.e., adversarial effort), which is embodied
by a computable Cost function and a budget bound (B) in
the feature space.

4. Technical Approach

To address the challenges set forth in the previous sec-
tions, we propose CaFA, a feature-space attack targeting NN
models, which crafts cost-aware adversarial examples that
are feasible relative to feature-space constraints. As depicted
in Fig. 2, we divide our method to three stages, similarly
to Sheatsley et al. [43]: (1) mining the feature constraints
and defining their utilization (§4.1); (2) perturbing the given
sample to fool the classifier model while maintaining struc-
ture constraints and low cost with TabPGD-CWL0 (§4.2);
and (3) projecting the perturbed sample onto the learned
constrained space using the Z3 solver [18] (§4.3).

4.1. Mining Constraints

As previously mentioned, we seek constraints of two
types—structure constraints and relation constraints in the
form of DCs. While the former are usually readily available
(as defined during feature engineering), those of the latter
type are typically not given explicitly and require extraction
from the data using specialized mining frameworks.

To mine DCs, we use FastADC [51], a state-of-the-
art technique for discovering soft DCs. We opt for soft

constraints as hard constraints can limit and potentially
exclude valuable and insightful constraints due to anomalous
samples (e.g., a key constraint or a trend valid for ≥99% of
samples might be omitted because of a malformed sample or
rare feature value). We mine the constraints from the training
set, tolerating up to a predefined violation rate among the
dataset’s sample pairs.

When using DCs in the attack, we seek to perturb
samples while complying with DCs. Recall that a DC
accounts for a pair of samples—other and main (§2.3).
Accordingly, to test the compliance of a sample with a
DC, we are required to assign the perturbed sample as
the main sample and assign each of the training samples
∈ Xtrain as the other sample, resulting in |Xtrain| practi-
cal constraints per DC. Thus, for a large set of DCs, D,
the number of practical constraints becomes excessively
large (|D| ⋅ |Xtrain|). Such a large number of constraints
may harm run-time performance, thus necessitating filtering
the DC sets. This filtration also allows us to control the
constraints’ soundness-completeness trade-off (see §5.1 and
§6.1). Namely, removing low-quality DCs covering a few
samples can increase completeness while incurring limited
decrease in soundness.

To select well-performing DCs during filtration, we form
a ranking-scheme based on well-established metrics [14],
[51] quantifying succinctness (favoring concise constraints),
coverage (favoring constraints more supported by data),
and certain forms of constraint violations (see App. A.2).
Subsequently, we pick the top-ranked constraints and closely
related tuples. More specifically, we pick the highest-ranked
DCs according to the metrics (amount denoted by ndcs),and, for each DC, we pick the other tuples that provided
the best compliance with the DC (an amount denoted by
ntuples, uniform over all DCs). This process allows evaluating
multiple DC sets and choosing a well-sized, high-quality set
of constraints, which we denote as T .

4.2. Perturbing Samples

Now we present TabPGD and TabPGD+CWL0, novel
evasion attacks for crafting adversarial samples complying
with structure constraints, and minimizing adversaries’ ef-
fort. We mathematically define the cost function (§4.2.1),
refer to the employed structure constraints (§4.2.2), and,
finally, fully describe the TabPGD attack (§4.2.3) and its



CWL0 extension (§4.2.4). The samples crafted with this
attack are later projected onto relation constraints (§4.3).
4.2.1. Heterogeneous Cost. As a proxy to the adversarial
effort, our attack aspires to bound and minimize the adver-
sarial perturbation with a l∞-norm variant (standardized-
l∞) and the l0-norm, respectively. Specifically, in our
framework, we bound the first (TabPGD) then minimize
the second (CWL0). In doing so, we seek to make attacks
more inconspicuous and, by proxy, limit their attacks’ finan-
cial cost. Incidentally, as a byproduct, we empirically find
that this approach also increases compliance with relation
constraints, possibly due to limiting deviation from original
samples that already satisfy these constraints (§6.2), and
helps preserve functionality in the problem space (§6.6).

standardized-l∞-norm ensures small-magnitude
changes in ordered features (i.e., continuous and ordinal).
To account for the heterogeneity of tabular data, we
perform a min-max scaling before calculating the l∞-norm.
Said differently, given a range size of each feature, Ri,derived from the ith feature’s support, we standardize
the features before applying the l∞-norm. Formally,
standardized-l∞(�) = maxi

|

|

|

�i
Ri

|

|

|

, where i iterates over the
ordered features. We define the standardized-l∞ �-ball
accordingly: ∀i ∶ [xi − � ⋅ Ri, xi + � ⋅ Ri], and call the Risas the standardization factors.

l0-norm minimization limits the overall number of fea-
tures that are altered.

Since each tabular feature mostly refers to a different
subdomain, one can interpret the first cost as minimizing
the extent of required effort within each subdomain, and the
second cost as minimizing the variety of efforts required.
Both goals are essential to ensure minimal effort when
transforming feature-space samples to the problem space.
4.2.2. Structure Constraints. Our attack incorporates the
targeted dataset’s structure constraints (§2.3), utilizing each
feature’s type and set of permissible values. Furthermore,
we account for the encoding methods of categorical features.
Chiefly, for MLPs (§5.3), our attack seeks to preserve one-
hot encodings’ syntax, and, for TabNets, it handles multi-
dimensional continuous embeddings of discrete features
(§6.2.2). For both encoding methods, our attack follows the
same principled approach (§4.2.3).

NNs often utilize one-hot encodings to process categori-
cal features [39], thus capturing features’ categories without
imposing arbitrary order on feature values. Specifically,
given a categorical feature f with S categories, its one-hot
encoding is a binary vector OneHot(f ) ∈ {0, 1}|S|, where
the j th entry is 1 if j = f and 0 otherwise. Consequently,
preserving valid encoding introduces an additional structure
constraint on the feature vector: (1) each encoded coordinate
is a single binary feature; and (2) exactly one coordinate in
OneHot(f ) must be 1.
4.2.3. TabPGD’s Algorithm. TabPGD tailors the PGD
framework to tabular data. PGD, originally developed for
the vision domain, ignores structure constraints and uses

Algorithm 1 TabPGD
Require: x (sample), y (label),

� (standardized-l∞ bound),
� (step-size factor), R (standardization factor),
n (iterations), structureConstraints

Ensure: x′ is adversarial example, or ⊥ if the attack fails.
1: x′ ← randomInitUnderStructureConstraint(x)
2: g(accum) ← 0
3: for _ ∈ {0, 1, 2,… , n} do
4: g ← ∇x′CrossEntropy(M(x′), y)
5: x′temp ← x′ + � ⋅ (R⊙ sign(g))
6: g(accum) ← g(accum) + g[categorical coordinates]
7: x′ ← perturbContinuousFeatures(x′temp, x′)8: x′ ← perturbIntegerFeatures(⌈x′temp⌉, x′)
9: x′ ← perturbCategoricalFeatures(g(accum), x′)
10: x′ ← clipToRange(x′)
11: x′ ← clipTo � Cost(x′)
12: if M(x′) ≠ y then
13: return x′
14: end if
15: end for
16: return ⊥

a fixed step size for all features. To overcome limitations,
TabPGD involves heterogeneous update steps and a cost
bound (standardized-l∞), and incorporates structure con-
straints throughout the perturbation. A concise pseudocode
is provided in Alg. 1 and explained in what follows.

TabPGD starts (Line 1) by randomly initializing the
adversarial sample (x′) within the standardized-l∞ �-ball
around the original sample (x). It then performs n iterations,
each updating x′ using gradients. Similar to PGD, we calcu-
late loss gradients w.r.t to the perturbed sample (g, Line 4),
then, we set the temporary perturbation (x′temp, Line 5) usingthe gradient’s sign, a predefined step size (�), and the stan-
dardization factor (R) (to account for heterogeneity, unlike
PGD). Since the temporal perturbation (x′temp) may violate
structure constraints (specified by StructureConstraints), we
update the perturbations to comply with these constraints:
continuous features are left unchanged (Line 7); ordinal,
integer features are rounded to the closest integer (Line 8);
and categorical features (Line 9) are modified based on
the accumulated gradient vector (g(accum)) of their encoding
(e.g., one-hot encoding), selecting the category encoded by
the largest accumulated gradient (across iterations) while
preserving valid encoding. To further enforce structure con-
straints and the cost bound we keep the perturbed fea-
tures within their allowed ranges (Line 10) and within the
standardized-l∞ �-ball (Line 11). The algorithm terminates
once the perturbed sample fools the model (Lines 12-14) or
after n iterations without success (Line 16).

4.2.4. CWL0 Variant. While TabPGD aims to bound the
standardized-l∞ cost of ordered features, it may still alter
many features, thus increasing adversaries’ effort. To address
this, CWL0 augments attacks to account for the overall
l0 cost. This extension adapts Carlini and Wagner (CW)’s
l0-norm attack [11]—shown effective in reducing the l0-



norm of perturbations in gradient-based attacks—to work
in tandem with TabPGD.

CWL0 operates by running TabPGD iteratively as a
black-box. Each TabPGD run generates a perturbation, �,
and its corresponding loss gradient w.r.t to the perturbed
sample, g. We employ a modified version of CW’s heuristic,
assigning each feature i a score

pi(�, g, R) =
gi ⋅ �i
Ri

to rank its importance for the attack; intuitively, the higher pithe more essential the feature for the attack. Note that, if the
ith feature is a coordinate in a one-hot encoding, we sum the
importance over all of the encoding’s coordinates, to form
a unified score for the categorical feature. After each itera-
tion, the feature with the lowest importance, argmini{pi},is frozen, meaning it remains unperturbed in subsequent
iterations. The algorithm iterates, freezing one feature at a
time, until either it fails to make further improvements or
reaches a predefined maximum number of iterations.
4.3. Projecting on Relation Constraints

Equipped with mined constraints (T , §4.1), CaFA even-
tually projects the preliminary adversarial sample, which, at
this point, complies with simple structure constraints, onto
the constrained space imposed by the more complex mined
relation constraints (e.g., DCs). We employ SAT Solvers
to guarantee the obtained samples satisfy the constraints
after projection, in a manner similar to prior work [43],
in contrast to approaches treating the constraints as ap-
proximated objectives [46]. We implement the projection as
follows: CaFA generates a first-order logic formula, ΦT , thatcaptures T—the set of mined constraints—and uses a SAT
solver to ensure compliance. Furthermore, we introduce �Twith additional assertions to verify the perturbations comply
with structure constraints and adhere to attack-defined cost
metrics (by bounding the allowed projection).

When a perturbed sample, x′, violates ΦT , we attempt
to satisfy it with partial assignment by relaxing a portion of
the literals (previously termed the projection budget [43]).
Utilizing Sheatsley et al.’s heuristic [43], we prioritize relax-
ing the features that are least constrained. Namely, we relax
the features satisfying the fewest assertions independently
(intuitively, avoiding the most constrained features would
increase the odds of a successful projection). We further
optimize this by employing binary search on the required
budget, aiming to minimize the number of relaxed fea-
tures while ensuring a successful projection. We empirically
found both methods (ranking and binary search) helpful
for keeping the number of projected features minimal, thus
helping to preserve attack success after projection.

Having decided which literals to free, our problem is
reduced to solving partially-assigned ΦT , with the partial
assignments given by the non-relaxed features of x′. To do
so, we employ the Z3 Solver [18], obtaining the projected,
perturbed sample satisfying both structural and relation con-
straints.

5. Experimental Setup

Next, we elaborate on the evaluation setup. We define
the metrics we used (§5.1), describe the datasets (§5.2) and
NN models (§5.3), specify the constraints employed (§5.4),
and list the evaluated attacks (§5.5).
5.1. Metrics

We used various metrics to evaluate constraints’ quality
and attack efficacy.
5.1.1. Constraint Metrics. To evaluate constraints, we used
and extended well-established metrics previously used in the
space [43].

Compliance checks if a sample x satisfies all constraints
in T :

∀t ∈ T ∶ x ⊧ t , or simply: x ⊧ T .

If true, we say x complies with T .
Completeness checks if all feature-space samples ∈ X

comply with T :
∀x ∈ ℝd ∶ x ∈ X ⟹ x ⊧ T .

If this holds, we say T is complete relative to the feature
space X.

Soundness checks if all instances (real vectors) comply-
ing with T pertain to the genuine feature space (i.e., ∈ X):

∀x ∈ ℝd ∶ x ⊧ T ⟹ x ∈ X.

If they do, we say T is sound relative to X.
Since the mathematical definitions of soundness and

completeness are not feasible to compute (they require
enumerating all samples in an unknown feature space), we
define empirical counterparts, lending themselves to being
computed on given a test set Xtest ⊂ X and a set of
constraints to evaluate T .

Empirical Completeness computes the proportion of
Xtest samples complying with T .

̂CompletenessT (Xtest) =
|

|

|

{

x ∈ Xtest ∣ x ⊧ T
}

|

|

|

|

|

Xtest
|

|

Empirical Soundness, a metric we introduce, lever-
ages manually constructed, ground-truth constraints (called
golden constraints; denoted as T̊ ) [29] to test whether the
mined constraint set can detect violations of data-integrity
constraints known to hold. For each sample x ∈ Xtest thatcomplies with our learned constraints T , we generate a mod-
ified sample x̊ by intentionally violating a golden constraint
t̊ ∈ T̊ . The violating modification is done by taking the
negation of the constraint and uniformly sampling a random
feature value that necessarily satisfies this negation. This
creates out-of-domain samples that should also violate T if
it is sound.

Hence, empirical soundness quantifies the proportion of
modified samples (x̊) that, while complying with T prior to
the modification, violate T after the modification. We apply



this prior restriction to samples that originally comply with
T , since we aspire to attribute the violations exclusively to
violating golden constraints. We consider each golden con-
straint separately in the metric, as their mining complexity
may vary:

̂SoundnessT (Xtest, T̊ ) =
{

x ∈ Xtest, t̊ ∈ T̊ ∣ x ⊧ T ∧ x̊�⊧T
}

|

|

|

T̊ ||
|

⋅ ||
|

{

x ∈ Xtest ∣ x ⊧ T
}

|

|

|

F1 derives a composite score from (empirical) sound-
ness and completeness. Attaining perfect completeness (by
accepting all samples) or soundness (by rejecting all con-
straints) alone is trivial, hence there is a need to bal-
ance both. One can view completeness and soundness as
analogous to recall and precision [17], respectively. Thus,
following this analogy, we adopt the F1 score—the harmonic
mean of completeness and soundness—as a quality measure
of the constraints set, seeking to maximize it. Formally:

F1 ∶=
2 ⋅ completeness ⋅ soundness
completeness + soundness

.

5.1.2. Attack Metrics. We use a battery of metrics to
estimate attacks’ efficacy.

Attack Success-Rate measures the proportion of mis-
classified adversarial samples:

|{M(x + �x) ≠ y ∣ x ∈ Xtest}|
|Xtest|

where �x is the adversarial perturbation the attack yields for
x. This is a widely accepted metric for evaluating attacks
(e.g., [9], [41]).

Feasible Attack Success-Rate computes the proportion
of misclassified samples that also comply with T .

|{M(x + �x) ≠ y ∧ (x + �x) ⊧ T ∣ x ∈ Xtest}|
|Xtest|

Related work also used this metric (e.g., [43], [46]).
Cost is measured in l0 and standardized-l∞ (§4.2).

5.2. Datasets

We used three commonly used [7], [19], [43] tabular
datasets. All datasets were randomly split into training and
testing sets (87% and 13% ratio). We summarize the features
of each dataset in Tab. 2.

Phishing. The phishing dataset [13], for detecting phish-
ing websites, comprises 10K samples: 5K phishing and
5K legitimate websites. It includes features derived from
webpage URLs and HTML source code. We focus on 10
out of 48 features that achieve maximal model accuracy, as
per work proposing the set [13] and Sheatsley et al. [43].

Bank Marketing. This bank dataset [33], for predicting
whether clients would purchase bank services, has 45K sam-
ples, with 5.2K positive labels indicating service purchase.
We selected 11 out of 16 features leading to the highest
validation accuracy, as per Borisov et al.’s survey [7].

# Features by type
Dataset # Samples Categorical Continuous Ordinal All

Phishing 10K 5 2 3 10
Bank 45K 4 2 5 11
Adult 32.5K 7 0 6 13

TABLE 2: Dataset sizes and feature counts by feature types.

Model
Dataset Adult Bank Phishing

MLP 86.1% 89.0% 94.7%
TabNet 87.0% 89.7% 95.9%

TABLE 3: The benign accuracy achieved over the test sets.

Adult. The adult dataset [26], for predicting whether
people’s income levels surpasses a certain threshold, con-
tains 32.5K samples, with 8K classified as high-income. We
used all 13 available features.

5.3. ML Models

We tested two NN architectures, training models for
each dataset. First, we used MLPs with ReLU activations,
as is standard [7], [43]. For these models, we prepro-
cessed our data with standard techniques [7], applying one-
hot encodings for categorical features and coordinate-wise
normalization based on training-data statistics. The MLPs’
hyperparameters were determined through a grid search,
optimizing for benign accuracy (i.e., accuracy on clean,
unperturbed data). The chosen models have five hidden
layers, each with width of 128, and were trained using the
Adam optimizer [24] with a learning rate of 5×10−4. Besides
targeting MLPs, we experimented with a transformer-based
state-of-the-art architecture geared for tabular data, Tab-
Net [2], choosing its hyperparameters via a grid search, and
using the official implementation. Tab. 3 reports the models’
benign accuracy on the three datasets. For all datasets, the
models achieved accuracy comparable to or exceeding past
benchmarks [7], [13], [33]. The TabNet models achieved
slightly better, yet similar, benign accuracy to their MLP
counterparts.

5.4. Constraints

We evaluated two types of relation constraints and used
them to measure feasibility. Particularly, we used DCs to
assess feasibility, except for §6.5, where we used Valiant’s.

Valiant’s Constraints. We used a variant of Valiant’s al-
gorithm, proposed by Sheatsley et al. [43], to mine Valiant’s
Constraints in CNF form. Motivated to model the most
general constraint theory, Sheatsley et al. proved that their
parameterization mines the least constrained constraint the-
ory. We note that any other parameterization of Valiant’s
is practically intractable to run, due to the exponential
complexity of its mining algorithm (App. A.1).

Denial Constraints (DCs).We mine DCs with the state-
of-the-art FastADC algorithm [51], allowing violation rates



of up to 1% for each soft constraint (i.e., no more than 1%
of training samples can violate each constraint), similarly to
Livshits at al. [29]. (We clarify that this is different from
the completeness metric from §5.1, estimating the rate at
which test samples violate all constraints.) For performance
reasons imposed by FastADC, we restrict the set of possible
DC predicates to only compare between the same features.
Note that cross-feature comparisons are mostly irrelevant
due to semantic differences between features in tabular data.
Yet, relations between features can still be learned, as the
constraint itself considers multiple features (each in its own
predicate). Additionally, we identified the predicate space
as a significant bottleneck in FastADC’s runtime, stemming
from an exponential dependency of the algorithm in the
predicate space’s size. Thus, formally, we used the predicate
space:

Ψ ∶=
{(

xi ⋄ x
′
i

)

∣ ⋄ ∈ {=,≠, <, >,≤,≥}, i ∈ [d]
}

.

This formalism can still capture expressive constraints of
the form presented in Fig. 1 (and does so in practice). The
specific set of DCs utilized in experiments was chosen after
evaluating multiple sets (see §6.1).

5.5. Evaluated Attacks

Besides the attack variants we propose, we evaluated and
compared multiple attacks whose hyperparameters were se-
lected as to optimize the feasible attack success-rates. Prior
attacks were chosen for close characteristic with CaFA [43],
[46]; other attacks were either difficult to properly reproduce
in the absence of an implementation, did not involve relation
constraints, or were domain specific (see Tab. 1).

CaFA (§4) is our proposed framework composed of
several components. We set TabPGD’s step size � to �

100
,

its standardized-l∞’s � to 1
30

(a choice which we further
explore in §6.3) and the number of iteration to 100. TabPGD
can be augmented with CWL0 and followed by projection
with a SAT solver. We ran CWL0 for up to 30 iterations and
used the Z3 solver [18]. Projections were done by freeing a
subset of the features, ranging from 0% to 50% of features
and determined by binary search.

PGD [31] is an iterative gradient-based white-box at-
tack, limiting perturbations’ l∞-norms (§2.1). We set the
norm bound (�) to 100 and the step-size (�) to 1, ran
attacks 100 iterations with early stopping, and used the
cross-entropy loss.

C-PGD [46] is a PGD variant transforming constraints
into a penalty function that is added to the attack’s loss func-
tion (§2.4). The attack optimizes three objectives—penalty
function (constraints), misclassification, and distance. We
adopted the same parameters as in PGD, assigning 0.1 as
the weight for the additional penalty, and used the official
implementation.

MoEvA2 [46] is a query-based attack using models’ out-
put probabilities and a multi-objective genetic algorithm (R-
NSGA-III [50]) to optimize an analogous loss to C-PGD’s.
We used the official implementation and adopted the variant

bounding the l2-norm due to the higher feasible attack
success rates attained compared to the l∞-norm variant (see
App. B). The remaining parameters were adopted from the
original work and implementation.

Sheatsley et al.’s Attacks [43] include (1) a PGD variant
with structural constraints, and (2) a Constrained-Saliency
Projection (CSP) attack, an l0-norm-based attack [36], both
integrating Valiant’s constraints. We compared these attacks
to CaFA in a setting identical to the one considered in the
original work (i.e., under Valiant’s constraint space).
6. Experimental Results

Now we turn to our results. We start with evaluating dif-
ferent constraint sets’ quality (§6.1) before assessing attacks’
effectiveness in terms of feasible success rates under DCs
(§6.2). Then, we test attacks on two other dimensions—
attack cost (§6.3) and run time (§6.4). Subsequently, we
measure attacks’ feasible success rates with Valiant’s con-
straints (§6.5). We close the section with a case study of
real-world phishing websites exploring the extent to which
CaFA and other attacks can produce adversarial samples
implementable in the problem space (§6.6).
6.1. Constraints’ Quality

Experiment Description. We empirically evaluated the
completeness and soundness (§5.1) of relation-constraint
sets of different types to identify high-quality ones. Specif-
ically, we evaluated constraints mined with Valiant’s algo-
rithm [43], [49] and DCs mined with FastADC [51]. Based
on this, we found constraints that best balance completeness
and soundness, maximizing the F1 score (§5.1). Here, we
report on the evaluation using the test set of the bank dataset.
We further validate the findings on the phishing dataset in
App. C.2.

For this experiment, we used a set of 1.5K samples
data points sampled from the bank dataset’s test set, where
we mined the constraints from the disjoint training set. For
measuring soundness, we used the four golden constraints
identified by Deutch and Frost for the the bank dataset [19];
notably, such constraints are not readily available for other
datasets, where a manual effort was required to extract
them (see App. C.2). We list these golden constraints in
Tab. 4 (e.g., the first constraint requires that for a client, x,
who was not contacted in the previous marketing campaign
(i.e., previous=0), the outcome of the previous campaign is
of category unknown (i.e., poutcome=-1)). We used these
constraints to generate violating samples (§5.1) that should
be rejected by the mined constraints.

We evaluate multiple sets of DCs, each of different
size, to attain different soundness-completeness tradeoffs:
increasing the number of constraints should increase sound-
ness, whereas decreasing it should boost completeness. We
formed the subsets by picking the highest ranked constraints,
per the ranking scheme previously presented (§4.1), limiting
both the required amount of constraints (ndcs) and the other
tuples (ntuples).



Constraint Comp. Rate (%)

x.previous = 0 ⟹ x.poutcome = −1 100.0%
x.previous = 0 ⟸ x.poutcome = −1 100.0%
x.job = ‘student’ ⟹ x.marital = ‘single’ ∧ x.age ≤ 35 99.8%
x.job = ‘admin’ ⟹ x.education = ‘secondary’ 100.0%

TABLE 4: Golden constraints derived by Deutch and
Frost [19] from the bank dataset. We describe each con-
straint relative to a feature vector x ∈ X and report the
precentage of samples complying with it.

Max-F1 (DCs#1)Valiant's

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Constraints Type
Denial Constraints
Max-F1 (DCs#1)
Valiant's

Soundness

C
om

pl
et

en
es

s

Figure 3: Evaluation of constraints’ soundness and com-
pleteness over the test set. We distinguish Valiant’s con-
straints set from the rest of the DCs, mined by Fas-
tADC [51]. We also mark DCs set with the highest F1 score
that we use in most experiments.

Type ndcs ntuples # Constr. Compl. Sound. F1 Notes

Valiant’s - - 51K 99.1% 7.9% 14.7%
DCs 5000 1 5K 88.3% 75.1% 81.2% Max. F1, DCs #1
DCs 7000 500 3.5M 14.4% 100.0% 25.2% DCs #2
DCs 100 1 0.1K 99.1% 7.1% 13.3% DCs #3

TABLE 5: Constraint sets of interest and their empirical
soundness, completeness, and F1 scores. DCs differ in their
configuration (i.e., ndcs and ntuples).

Experiment Results. The empirical completeness and
soundness for different constraint sets are depicted in Fig. 3.
Tab. 5 presents constraint sets of interest. From our eval-
uation, we conclude that Valiant’s constraints serve as a
strong baseline in terms of completeness—consistent with
the inherent properties of their mining process (§5.4) [43].
To achieve this performance, Valiant’s algorithm crafts nu-
merous constraints (51K; see Tab. 5). In contrast, DCs
manage to achieve comparable soundness and complete-
ness measures with significantly fewer constraints (0.1K;
DCs #3 in Tab. 5). Furthermore, Valiant’s algorithm yields
low soundness. This can be attributed to the algorithm
configuration, which favors completeness over soundness.
We reiterate that other parameterizations are infeasible to
run (§5.4), preventing us from attaining other soundness-
completeness trade-offs with Valiant’s constraints. Note that,

since soundness is monotone in the constraint sets (i.e.,
adding more constraints to a set implies, by definition, larger
soundness), inspecting subsets of Valiant’s full constraint set
(as done for DCs) could only harm soundness.

The expected completeness-soundness trade-off is vis-
ible in the analysis of DCs—larger sets lead to higher
soundness and lower completeness (see DCs #2 and DCs #3
in Tab. 5). To balance the two metrics, picking performant
DCs for the remaining experiments, we chose the constraint
set achieving highest F1 measure (Fig. 3), resulting in a set
containing 5K constraints (DCs #1, Tab. 5). Applying the
same evaluation on the phishing dataset, we reached similar
conclusion (App. C.2), leading us to use the 5K constraints
as a default configuration for DCs. The chosen DCs sets of
phishing, adult, bank datasets achieved 95.4%, 84.7%, and
88.3% empirical completeness, respectively, on the test data.

6.2. Feasible Attack Success

We evaluate attacks’ success, in terms of misleading
the targeted models (MLPs and TabNets) and feasibility
of the adversarial samples relative to the chosen set of
DCs. In addition to evaluating full attacks, when DCs were
integrated, we also examined variations where we prevented
access to DCs by the attacks (e.g., by disabling projection
after TabPGD in CaFA, or not including constraints in C-
PGD’s and MoEvA2’s losses). Doing so helped us gain
further insights about how attacks work and allowed us
to estimate success when adversaries have no access to
auxiliary data for mining constraints.

6.2.1. Attacking MLPs. We performed three experimental
runs, each with a different random seed and different 1K
test samples. We report the average results in Fig. 4 (more
details are included in App. C.4).

As evaluations of the full attacks show (Fig. 4a), both
variants of our CaFA (TabPGD and TabPGD+CWL0) at-
tained higher feasible success rates than other attacks on all
datasets. We note a wider performance gap (Fig. 4a, between
CaFA and other attacks) compared to the gap shown when
disabling DC access (Fig. 4b), indicating CaFA benefits
more from DC integrating. We also noticed varying per-
formance across datasets, which could be attributed to their
distinct characteristics (e.g., amount of categorical features).
Nonetheless, CaFA consistently found feasible adversarial
samples in challenging datasets like the bank dataset, where
other attacks showed limited success.

As anticipated, attacks not integrating DCs were more
likely to produce out-of-domain adversarial samples, as indi-
cated by the low feasible success rates (Fig. 4b). Still, across
all datasets, CaFA consistently achieved the highest feasible
success, with MoEvA2 providing slightly a lower rate. This
validates the effectiveness of approaches incorporating struc-
ture constraints, and more critically, providing perturbations
with low l0-norms. In particular, these findings show that,
in the absence of complex constraints, minimizing pertur-
bations’ l0-norms can improve the likelihood of producing



C-PG
D

C-PG
D

C-PGD

M
oEvA

M
oEvA

M
oEvA

PG
D

+
SAT

PG
D

+
SAT

PGD+SAT

TabPG
D

+
SAT

TabPG
D

+
SAT

TabPG
D

+
SAT

C
aFA C

aFA

C
aFA

adult bank phishing
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 CaFA
TabPGD+SAT
PGD+SAT
MoEvA
C-PGD

Dataset

Fe
as

ib
le

 S
uc

ce
ss

(a) Full attacks

M
oEvA

MoEvA

M
oEvA

PGD PGD
PGD

TabPG
D

TabPG
D

TabPG
D

C
aFA C

aFA

C
aFA

adult bank phishing
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 CaFA
TabPGD
PGD
MoEvA

Dataset

Fe
as

ib
le

 S
uc

ce
ss

(b) Ablation: Disabling DCs access
Figure 4: Comparison of the proportion of feasible and misclassified adversarial samples across attacks on MLPs.

feasible adversarial samples. This is presumably since al-
tering fewer features reduces the interference with feature
dependencies.
6.2.2. Attacking TabNets. To further validate our find-
ings, we tested feasible success rates on state-of-the-art
transformer-based TabNet models. A slight adjustment to
TabPGD was required to attack the transformer-based mod-
els. Since TabNet uses a continuous embedding layer to
encode discrete categorical features, a special treatment was
required for their perturbation (§4.2). Particularly, inspired
by the attack on binary malware by Kreuk et al. [27], we
performed the following in each gradient-update step of the
attack: we calculated the continuous perturbation on the em-
bedding layer (as if these are continuous features we attack)
using step size maximizing attack success per line search,
and picked the discrete categories whose embeddings were
closest (in Euclidean distance) to the perturbed embedding.

From the results (Fig. 5), we observe that CaFA’s fea-
sible success surpasses prior attacks, with similar trends
to those presented when attacking MLPs. When disabling
DCs access, we notice a decrease in the feasible success,
with MoEvA2 outperforming CaFA on two datasets. These
results emphasize that CaFA benefits from DC access more
than other attacks do.
6.3. Attack Cost

Next, we measured attacks’ cost—a crucial aspect of
attacks, besides their feasible success rates (§3). We first in-
spect the costs of the different attacks (standardized-l∞,l0)while considering success, then we specifically examine
CaFA’s efficiency in reducing perturbations’ l0-norms.

Comparing Attacks. In this experiment, we ran attacks
and measured their costs and feasible success rates, while
averaging these over the datasets. We report the results in
Fig. 6, and provide a more fine-grained analysis of the
standardized-l∞- and l0 costs in App. C.1.

We find that our attacks provide the best trade-off be-
tween l0- and standardized-l∞-norms, while maintaining
the highest feasible success. This is opposed to other attacks,

C-PG
D

C-PG
D C-PG

D

M
oEvA

M
oEvA

M
oEvA

PG
D

+
SAT

PG
D

+
SAT

PG
D

+
SAT

TabPG
D

+
SAT

TabPG
D

+
SAT

TabPG
D

+
SAT

C
aFA

C
aFA

C
aFA

adult bank phishing
0

0.1

0.2

0.3

0.4
CaFA
TabPGD+SAT
PGD+SAT
MoEvA
C-PGD

Dataset

Fe
as

ib
le

 S
uc

ce
ss

(a) Full attacks

M
oEvA

M
oEvA

M
oEvA

PGD
PGD PGD

TabPGD

TabPG
D

C
aFA

C
aFA

C
aFA

adult bank phishing
0

0.1

0.2

0.3

0.4
CaFA
TabPGD
PGD
MoEvA

Dataset

Fe
as

ib
le

 S
uc

ce
ss

(b) Disabling DCs access
Figure 5: Comparison of the proportion of feasible and
misclassified adversarial samples across attacks on TabNets.

which either incur high costs in at least one norm (MoEvA2,
C-PGD), or fail to produce successful attacks (PGD). We
contend that using a standardized distance metric is partic-
ularly useful for tabular data, where features’ value ranges
may vary, thereby requiring different levels of adversarial
effort for an equivalent feature modifications.

CaFA’s l0-norm. We measured the perturbation’s l0-norm of the feasible and successful adversarial samples
crafted by CaFA’s variants. The results (Fig. 7) evidence
CWL0’s importance—it can reduce up to half of the number
of perturbed features compared to TabPGD alone. Overall,
CaFA requires modifying 15–30% of features, on average,
for feasible and successful attacks.

6.4. Attack Run-Time

Run time is another factor that may impact CaFA’s
and other attacks’ adoption. To this end, we evaluated and
compared attacks’ average run time for producing a single
adversarial example. We executed attacks against the MLPs
over 500 test samples, one sample at a time, and calculated
the average run time. We then averaged the results across
the three datasets.



0 0.5 1
0

0.05

0.1

0.15 MoEvA
C-PGD
PGD+SAT
TabPGD+SAT
CaFA

Figure 6: Comparing attacks’ costs (l0 and standardized-
l∞) while accounting for their feasible success (as indicated
by the bubble size). Dashed line marks the � parameter
used by CaFA and TabPGD. Measures were averaged over
all datasets (see App. C.1 for per-dataset results). Larger
bubbles closer to the bottom-left corner are better.

16.81%

27.19%

30.71%

26.80%

44.50%

55.28%

0% 10% 20% 30% 40% 50%

adult

bank

phishing

TabPGD
CaFA

% Of perturbed features (L0 Rate)

D
at

as
et

Figure 7: l0 measures of the perturbations generated by
feasible and successful adversarial samples of CaFA’s varia-
tions (lower is better). To enable comparison across datasets,
the measures were normalized by the number of features.

As shown in Fig. 8, both CaFA variants are roughly
as fast as PGD, making them the fastest-measured methods
incorporating constraints. A notable bottleneck in CaFA is
the projection using SAT solvers. However, we observe this
bottleneck is alleviated when reducing the l0 cost, as seen
with CWL0.
6.5. Feasible Success With Valiant’s Constraints

Different constraint types can be integrated into CaFA.
To test its flexibility, we explored incorporating Valiant’s
constraints, mining them as described by Sheatsley et
al. [43] (see §A.1). We compared the findings to those
attained by Sheatsley et al.’s [43] attacks (PGD and CSP) on
the phishing dataset. Due to the lack of publicly available
implementation, we also tested their PGD variants’ perfor-
mance with our attempted implementation.

Tab. 6 presents the results on the phishing dataset
(see App. C.5 for results on other datasets). CaFA yields

C-PGD

MoEvA

PGD

SAT Projection

TabPGD

SAT Projection

CaFA

SAT Projection

0

10

20

30

40

CaFA
TabPGD
PGD
MoEvA
C-PGD

R
un

tim
e 

(s
ec

)

Figure 8: Average attack run-times per sample. For CaFA
(TabPGD variants), we distinguish the perturbation stage
from the projection.

Full Attacks Disabling Access
Attack Comp. Comp. & Mis. Comp. Comp. & Mis.
CaFA (Valiant’s) 100.0% 87.6% 77.7% 77.7%
PGD [31] (with tuning) 100.0% 67.1% 3.3% 3.3%
Sheatsley et al.’s PGD (∗) [43] 60.0% 60.0% 25.0% -
Sheatsley et al.’s PGD [43] 89.4% 32.4% 2.8% 2.8%
Sheatsley et al.’s CSP (∗) [43] 100% 60.0% 80.0% -

TABLE 6: Attacking phishing detection with Valiant’s con-
straints. We report the percentage of adversarial examples
complying with the constraints and ones both complying
and misclassified (i.e., feasible success rate) on the full
attacks and when disabling Valiant’s access. (∗) denotes
results reported in prior work [43] (otherwise, the results
were produced by our experiments).

∼78% successful and feasible adversarial samples before
projection, increasing to ∼88% post-projection—about ×1.5
more than the baseline attacks. Interestingly, Sheatsley et
al. previously concluded that Valiant’s constraints markedly
harms attack success-rates [43]. Our findings draw a dif-
ferent picture, with attacks succeeding relatively often even
when Valiant’s constraints are accounted for. Results on the
other datasets further corroborate this finding (App. C.5).
We attribute CaFA’s improved success rates mainly to how
the attack handles heterogeneous features (e.g., step size)
and to the minimization of the projected-features count,
contributing to maintaining the samples misclassified.

6.6. Case Study: Evading Phishing Detection

We ran a case study to challenge CaFA with a real-
world problem space. Namely, we employed CaFA to guide
manual modification of actual phishing websites to evade
detection by the phishing-detection MLP (§5.3). Through
this study, we critically analyzed different attack variants
from a problem-space perspective, highlighting the impor-
tance of CaFA’s attack objectives (§3) in a real-world sce-
nario. We chose to focus on a set of phishing samples, as this
domain has clear and precise definition for implementability
(i.e., producing a valid HTML), in addition to up-to-date
and realistic samples available online.



PGD 11

PGD + Valiant's 2 2 7

TabPGD 3 8

CaFA (w/o DCs) 6 5

CaFA 6

IMPLEMENTABLE

5

NON-IMPLEMENTABLE NON-EVASIVE

Figure 9: Results of manually examining 11 samples
of phishing websites originally detected by our phishing-
detection MLP. We attempted to implement (the HTML
and URL) the adversarial sample created by each attack (or
at different stages of CaFA) and annotated whether it was
implementable or not. Some adversarial samples were also
found to be non-evasive (i.e., they were correctly classified).

For the study, we collected 11 samples of phishing
websites in the wild (i.e., HTML files), recently identified in
the PhishTank archive [1] (sample IDs found in App. C.3).
To perform attacks, we first extracted the website’s features.
Then, we employed CaFA framework to generate an ad-
versarial feature-space instance. This instance subsequently
served as a recipe for modifying the problem-space instances
(original URL and HTML code) to fool the targeted ML
detector. We repeated this process with different attacks,
attempting to manually implement the problem-space in-
stances for each, and annotating whether it was possible.

Using our attack, we successfully manipulated up to
∼55% of the phishing websites to evade the model, while
performing inconspicuous changes. Fig. 9 presents the re-
sult, and App. C.3 documents a problem-space sample we
produced.

Attacks’ Realizability. Tailoring the attack to the tab-
ular domain markedly increased attacks’ success (PGD vs.
CaFA in Fig. 9) and led to better alignment with problem-
space constraints compared to prior work (PGD+Valiant’s
vs. CaFA in Fig. 9). Enforcing structure constraints
(TabPGD) has immediately made some attacks practical
by eliminating critical feature inconsistencies, such as en-
suring an integer URL in reasonable length. Additionally,
minimizing the number of perturbed features (i.e., l0-normminimized by TabPGD+CWL0 even without incorporating
DCs in CaFA), originally motivated by cost, also resulted in
implementable adversarial samples in the feature space. This
result is consistent with those show in §6.2, where minimiz-
ing l0-norm already improved feasible success rates, even
without integrating DCs.

Direction for Improving Realizability. The results
show that, in the particular use-case examined, integrating
the DCs mined with FastADC [51] did not provide an
improvement in realizability compared to the attack variant
merely minimizing the perturbations’ l0-norms (CaFA vs.
CaFA (w/o DCs) in Fig. 9). A closer inspection showed that
the mined set of DCs lacked highly nuanced constraints—for
instance, subtle dependencies between different proportions

of hyperlinks, akin to the last golden constraint presented
in Tab. 7 (App. C.2), were not mined—as opposed to the
coarser dependencies the DCs aptly identified (e.g., numer-
ical character count in a URL not exceeding its length).
This is not surprising, due to imperfect completeness and
soundness measures of DCs (App. C.2). Accordingly, pro-
jecting on the mined DCs still led to violations of constraints
imposed by the problem space, thus harming realizability.
While DCs posses of high expressivity, capable of capturing
nuanced dependencies, a profound challenge lays in mining
them to capture genuine constraints with high completeness
and soundness. Thus, enhancements in mining DCs, leading
to higher quality constraints in the future, would also boost
CaFA’s efficacy.

Cost Efficiency. Throughout the manual translation of
perturbations into problem-space modifications, the signif-
icance of cost was apparent. The bounded standardized-
l∞-norm in CaFA has contributed to limiting the effort
required for certain modifications. For example, it meant that
only minor character alterations were required for the URL.
A drastic URL change would necessitate significant effort,
such as potentially purchasing a new domain. Additionally,
minimizing l0-norm helped in narrowing down the variety
of efforts required from the attacker. For instance, modifying
only href HTML tags was simpler than tampering with
multiple, potentially interdependent, HTML logics. In this
study we also observed that minimizing the adversarial
effort has served the implementable adversarial samples in
maintaining their functionality (i.e., phishing pages kept
identical appearance when implemented after evasion).

7. Discussion

We now discuss potential defenses against CaFA and
other future directions.

Defenses. Adversarial training, demonstrated effective
under various threat models (e.g., [8], [31], [46]). It is
perhaps the most natural defense against adversarial exam-
ples generated by CaFA. To conduct adversarial training,
one would need to execute CaFA for each training batch
to craft adversarial examples for training. Doing so would
incur a significant training-time overhead (Fig. 8) potentially
rendering adversarial training infeasible. Thus, speeding up
attacks (e.g., by accelerating, or relaxing, the projection)
could be critical for enabling adversarial training.

Yet another interesting direction to explore would be
detecting adversarial examples crafted by CaFA. In partic-
ular, due to the nature of projections with SAT solvers,
we conjecture that, compared to benign samples, CaFA’s
adversarial examples would violate constraints by changing
more features by smaller amounts. Accordingly, if such
differences exist, statistical techniques would allow telling
adversarial and benign samples apart. These techniques
could supplement pre-existing detectors (e.g., [40]), enhanc-
ing their detection accuracy.

Extending a concept proposed by Simonetto et al. [46],
another approach is enriching the model’s input with more



features computed as complicated functions of other fea-
tures, with the goal of inducing a challenge for constraint
mining. For example, one may add a feature via a compli-
cated arithmetic function of other features that cannot be
represented by DCs, despite their expressivity.

Finally, as ML models interoperate with other modules
(e.g., expert-defined rule-based tools for phishing detection)
when deployed in real-world systems, the complexities of
such systems may pose natural challenges to adversaries.
Therefore, an intriguing direction for future research would
be to evaluate the robustness of complex real-world systems
against CaFA and similar attacks.

Future Work. Besides enhancing models’ robustness
against CaFA and related attacks, it would be interesting to
explore avenues to improve CaFA’s performance and further
generalize it. For instance, improved projection techniques
can help improve CaFA’s performance, possibly by relaxing
the requirement to satisfy all the constraints to most of
them, or explicitly accounting for cost and misclassification
objectives. Additionally, to make it more widely applicable,
it would also be helpful to extend CaFA to non-NN-based
ML models.

8. Conclusion

We presented CaFA, a system producing adversarial
examples to mislead ML models classifying tabular data.
CaFA tackles the two primary challenges of realizability—
i.e., adversarial perturbations in the feature space may
not be implementable in the problem space—and cost
minimization—i.e., ensuring adversaries’ effort is mini-
mized when crafting adversarial artifacts. To tackle the
former, CaFA leverages structure constraints and automat-
ically mined denial constraints, ensuring that adversarial
perturbations comply with domain-imposed restrictions. For
the latter, CaFA seeks to minimize the number of features
perturbed as well as the extent to which they are altered
while accounting for the heterogeneity of features. The
empirical evaluation with three commonly used datasets and
two standard models demonstrate, among others, the (1)
advantages of the constraints used by CaFA (specifically,
better balancing soundness and completeness than previ-
ously used constraints); (2) CaFA superiority at generating
feasible adversarial examples that are misclassified while
satisfying integrity constraints compared to prior attacks;
and (3) CaFA ability to minimize the number of feature’s
perturbed and the perturbations’ magnitude. We open-source
CaFA’s implementation, hopefully it would be used as a
generic mean for evaluating tabular classifiers’ robustness
against practical attacks prior to deployment.

Acknowledgements

This work has been partially funded by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 804302) and has been supported in part by a grant

from the Blavatnik Interdisciplinary Cyber Research Center
(ICRC); by Intel® via a Rising Star Faculty Award; by a gift
from KDDI Research; by Len Blavatnik and the Blavatnik
Family foundation; by a Maof prize for outstanding young
scientists; by the Ministry of Innovation, Science & Tech-
nology, Israel (grant number 0603870071); by a gift from
the Neubauer Family foundation; by NVIDIA via a hardware
grant; and by a grant from the Tel Aviv University Center
for AI and Data Science (TAD).

References

[1] Phishtank. https://www.phishtank.com/. Accessed on 2024-04-18.
[2] Sercan Ö. Arik and Tomas Pfister. TabNet: Attentive interpretable

tabular learning. In AAAI, 2021.
[3] Vincent Ballet, Xavier Renard, Jonathan Aigrain, Thibault Laugel,

Pascal Frossard, and Marcin Detyniecki. Imperceptible Adversarial
Attacks on Tabular Data. In NeurIPSW, 2019.

[4] Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial
transformation networks. In AAAI, 2018.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion
attacks against machine learning at test time. In ECML/PKDD, 2013.

[6] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. In CCS, 2018.

[7] Vadim Borisov, Tobias Leemann, Kathrin Sessler, Johannes Haug,
Martin Pawelczyk, and Gjergji Kasneci. Deep neural networks and
tabular data: A survey. IEEE Trans Neural Netw Learn Syst, 2022.

[8] Hamid Bostani, Zhengyu Zhao, Zhuoran Liu, and Veelasha Moon-
samy. Domain constraints in feature space: Strengthening robustness
of android malware detection against realizable adversarial examples.
arXiv, 2022.

[9] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel,
Jonas Rauber, Dimitris Tsipras, Ian J. Goodfellow, Aleksander Madry,
and Alexey Kurakin. On evaluating adversarial robustness. arXiv,
2019.

[10] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas
Terzis, and Florian Tramer. Membership inference attacks from first
principles. In S&P, 2022.

[11] Nicholas Carlini and David A. Wagner. Towards evaluating the
robustness of neural networks. In S&P, 2016.

[12] Francesco Cartella, Orlando Anunciação, Yuki Funabiki, Daisuke
Yamaguchi, Toru Akishita, and Olivier Elshocht. Adversarial attacks
for tabular data: Application to fraud detection and imbalanced data.
In SafeAI, 2021.

[13] Kang Leng Chiew, Choon Lin Tan, KokSheik Wong, Kelvin S.C.
Yong, and Wei King Tiong. A new hybrid ensemble feature selection
framework for machine learning-based phishing detection system. Inf.
Sci., 2019.

[14] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial con-
straints. In VLDB, 2013.

[15] Amit Cohen and Mahmood Sharif. Accessorize in the dark: A security
analysis of near-infrared face recognition. In ESORICS, 2023.

[16] Francesco Croce and Matthias Hein. Reliable evaluation of adversar-
ial robustness with an ensemble of diverse parameter-free attacks. In
ICML, 2020.

[17] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and ROC curves. In ICML, 2006.

[18] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In TACAS, 2008.

https://www.phishtank.com/


[19] Daniel Deutch and Nave Frost. Constraints-based explanations of
classifications. In ICDE, 2019.

[20] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust
physical-world attacks on machine learning models. In CVPR, 2018.

[21] Kevin Eykholt, Taesung Lee, Douglas Schales, Jiyong Jang, and Ian
Molloy. URET: Universal robustness evaluation toolkit (for evasion).
In USENIX Security, 2023.

[22] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick McDaniel. Adversarial examples for malware
detection. In ESORICS, 2017.

[23] Cormac Herley. Why do Nigerian scammers say they are from
Nigeria? In WEIS, 2012.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[25] Klim Kireev, Bogdan Kulynych, and Carmela Troncoso. Adversarial
robustness for tabular data through cost and utility awareness. In
NDSS, 2023.

[26] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid. In KDD, 1996.

[27] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny
Pinkas, and Joseph Keshet. Deceiving end-to-end deep learning
malware detectors using adversarial examples. In NeurIPSW, 2018.

[28] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela Tron-
coso. Evading classifiers in discrete domains with provable optimality
guarantees. arXiv, 2018.

[29] Ester Livshits, Alireza Heidari, Ihab Ilyas, and Benny Kimelfeld.
Approximate denial constraints. In VLDB, 2020.

[30] Keane Lucas, Sharif, Mahmood, Bauer, Lujo, Michael K. Reiter,
and Saurabh Shintre. Malware makeover: Breaking ML-based static
analysis by modifying executable bytes. In AsiaCCS, 2021.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In ICLR, 2018.

[32] Yael Mathov, Eden Levy, Ziv Katzir, Asaf Shabtai, and Yuval Elovici.
Not all datasets are born equal: On heterogeneous tabular data and
adversarial examples. Knowl Based Syst., 2022.

[33] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach
to predict the success of bank telemarketing. Decis. Support Syst.,
2014.

[34] Thomas Kobber Panum, Kaspar Hageman, René Rydhof Hansen, and
Jens Myrup Pedersen. Towards adversarial phishing detection. In
CSET, 2020.

[35] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh
Jha, Z. Berkay Celik, and Ananthram Swami. Practical black-box
attacks against machine learning. In AsiaCCS, 2017.

[36] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. The limitations of deep
learning in adversarial settings. In EuroS&P, 2015.

[37] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann.
Discovery of approximate (and exact) denial constraints. In VLDB,
2019.

[38] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo
Cavallaro. Intriguing properties of adversarial ML attacks in the
problem space. In S&P, 2020.

[39] Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. A comparative
study of categorical variable encoding techniques for neural network
classifiers. In IJCA, 2017.

[40] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd:
A statistical test for detecting adversarial examples. In International
Conference on Machine Learning, 2019.

[41] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K.
Reiter. Accessorize to a crime: Real and stealthy attacks on state-of-
the-art face recognition. In CCS, 2016.

[42] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K.
Reiter. A general framework for adversarial examples with objectives.
ACM TOPS, 22(3):16:1–16:30, 2019.

[43] Ryan Sheatsley, Blaine Hoak, Eric Pauley, Yohan Beugin, Michael J.
Weisman, and Patrick McDaniel. On the robustness of domain
constraints. In CCS, 2021.

[44] Ryan Sheatsley, Nicolas Papernot, Michael J. Weisman, Gunjan
Verma, and Patrick D. McDaniel. Adversarial examples in constrained
domains. arXiv, 2020.

[45] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In S&P, 2017.

[46] Thibault Simonetto, Salijona Dyrmishi, Salah Ghamizi, Maxime
Cordy, and Yves Le Traon. A unified framework for adversarial attack
and defense in constrained feature space. In IJCAI, 2022.

[47] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry
Kuznetsov, and Heng Yin. MAB-Malware: A reinforcement learn-
ing framework for blackbox generation of adversarial malware. In
AsiaCCS, 2022.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In ICLR, 2014.

[49] Leslie G. Valiant. A theory of the learnable. Commun. ACM,
27(11):1134–1142, 1984.

[50] Yash Vesikar, Kalyanmoy Deb, and Julian Blank. Reference Point
Based NSGA-III for Preferred Solutions. In SSCI, 2018.

[51] Renjie Xiao, Zijing Tan, Haojin Wang, and Shuai Ma. Fast approxi-
mate denial constraint discovery. In VLDB, 2022.

[52] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading
classifiers. In NDSS, 2016.

Appendix A.
Additional Technical Details

A.1. Valiant’s Constraints

Inspired by Sheatsley et al. [43], we consider the boolean
constraints mined by Valiant’s PAC learning algorithm [49]
to capture relation constraints. Specifically, as described
next, we focus on a particular variant of Valiant’s constraints.

Definition. Valiant’s algorithm learns boolean constraint
theories from the data [49]. It captures constraints as Con-
junctive Normal Form (CNF) logical formulas, where each
predicate enforces the equality of some feature to a constant.
Following Sheatsley et al., we use Valiant’s algorithm to
mine permissive constraint theories,2 enabling us to evaluate
robustness against the least constrained adversary. Doing so
also renders the mining process tractable, as mining less
permissive constraint theories with Valiant’s algorithm is
often intractable in practice.

Binning. The complexity of the Valiant’s algorithm is
exponential in the size of the features’ support (i.e., values
they can admit). In practice, many features have large sup-
port (e.g. continuous features may admit as many distinct
values as the number of samples). Hence, to make Valiant’s
2. Specifically, we set k=1



algorithm feasible to run, we discretize continuous features,
similarly to prior work [43]. Particularly, we discretize con-
tinuous features by binning their values into one of kbin binsformed by applying the k-means algorithm3 to each feature’s
support. We note that k-means led to the best observed
performance, higher than the OPTICS algorithm considered
in prior work [43]. We denote the discretized support of
feature i as S̃i (a discrete set of size kbin).4 For features
that were not discretized, S̃i simply stands for the feature’s
actual support. We denote the discretized feature space X̃.

Parameterization. Our implementation runs over the
following form of possible constraints:
Γ ∶=

{

∀x ∈ X. ∨i∈[d]
(

xi = si
)

∣ s1 ∈ S̃1,… , sd ∈ S̃d
}

Put simply, each constraint, defined by a support vector,
(s1,… sd), requires that each sample x in the feature space
would have at least a single coordinate, j ∈ [d] , where it
identifies with the values of the support vector (i.e., xj =
sj). As noted to earlier, other parameterizations of Valiant’s
constraint space consider a set of possible values per clause
(e.g., a clause can be of form xi ∈ S′i instead of xi = s′i),leading to an exponential growth in the mining complexity.

Mining Process. Given the training set after discretiza-
tion, X̃train, Valiant’s algorithm begins with T ∶= Γ, the
space of all possible constraints, and returns returns T , the
set of the mined constraints [49]. The algorithm iterates on
each (discretized) sample x̃ ∈ X̃train, and checks, for each
potential constraint t ∈ T , whether x̃ satisfies it or not. If
x̃ does not satisfy t , then t is discarded from T . In the
worst case, when no constraint is discarded, we get a time
complexity of O

(

|

|

|

X̃train
|

|

|

Πdi=1
|

|

|

S̃i
|

|

|

)

.
Advantages of DCs Over Valiant’s. Besides the em-

pirical evidence above, we opt for DCs for their desirable
properties over Valiant’s constraints. First, DCs using soft
constraints can potentially identify valuable constraints that
may be excluded by Valiant’s due to a few noisy sample.
Furthermore, as opposed to Valiant’s, mining DCs does not
necessitate data discretization and is applied to the raw form
of the samples. This absence of discretization enhances the
representativeness of the constraints; for example, Valiant’s
fails to model dependencies within the discretized ranges,
which could be vital for addressing small perturbations.
Finally, the ability to work directly with raw data also
enables DCs to incorporate additional, important assertions
on the literals, such as setting precise perturbation bounds.

A.2. Ranking DCs

As mentioned in §4.1, in our framework, we use only
a subset of the mined DCs, based on a heuristic ranking
scheme. Here, we elaborate on this scheme, establishing it
based on metrics from data-integrity literature.
3. We use sklearn’s KBinsDiscretizer with k-means.
4. Amount of bins per dataset: kbin=4 for bank, kbin=6 for phishing, and

kbin=4 for adult.

In this work, we use the following standard metrics that
quantify different aspects of DCs (e.g., the “interestingness”
constraints [14] as well as their satisfaction by in-domain
samples [29], [37], [51]):

∙ Succinctness [14]. Following “Occam’s Razor,” an in-
sightful DC would be short and concise. This metric
stands for how close the DC’s amount of predicates
to the minimum length of predicates. The closer, the
better.

∙ Coverage [14]. Even if a DC is satisfied, the amount
of satisfied inner-predicates varies. This amount of
satisfied predicates can be seen as the support in the
data. Coverage measures, for a single DC, the weighted
average of the amount of satisfied predicates, over the
different sample pairs in the data.

∙ Pairs violation [29], [37], [51] measures the propor-
tion of sample pairs violated by the DC (out of all
sample pairs). Also known as the violation rate when
considered in soft DCs.

∙ Sample violation [29] quantifies the proportion of
samples for which exist any pair of that violates the
DC, over all samples.
To use these metrics in our ranking scheme, the follow-

ing process is applied after mining the DCs:
1) We sample a subset (3K) samples from the training set.
2) We select (10K) the DCs to rank, according to an

efficiently calculated metric–succinctness.
3) Each DC is assigned a score according to a linear

combination of the four metrics. The coefficients for the
linear combination are selected by manually inspecting
the ranking provided by different values.

4) For each DC, we choose the most satisfying other
tuples, calculated as the satisfaction rate of the DCs
with the other tuple.

5) We choose the ndcs top-ranked DCs, and, for each, we
choose the ntuples top-ranked other tuples.

Appendix B.
Additional Experimental Setup Details

MoEvA2’s Norm Function Throughout our experi-
ments (§5), when using MoEvA2 [46], we set it to run
while minimizing the l2-norm, although we are measuring
a variation of l∞-norm. This choice was taken after finding
that the feasible success of MoEvA2 is higher under this
choice of norm function.

We ran an experiment similar to our original analysis
(§6.3), and compare the performance of two instances of
MoEvA2, one with the distance objective of l2 distance andthe other one with the l∞ objective. We report the result
in Fig. 10, where we observe that, although not intuitive,
incorporating the l2 objective provides better performance
under our standardized-l∞ metric.



5 0.001 2 5 0.01 2 5 0.1 2 5 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Dataset, Attack

adult, L2
adult, L-Inf
bank, L2
bank, L-Inf
phishing, L2
phishing, L-Inf

Epsilon

Fe
as

ib
le

 S
uc

ce
ss

 R
at

e 
(i

n 
ep

si
lo

n 
ba

ll)

Figure 10: Comparing the feasible success rates of MoEvA2
with DCs under l∞- and l2-norms.

0 0.05 0.1 0.15 0.2

adult

bank

phishing

MoEvA
C-PGD
PGD+SAT
TabPGD+SAT
CaFA

Standardized-L-Inf Rate (of feasible & adv. samples)

D
at

as
et

Figure 11: The standardized-l∞ cost of feasible and suc-
cessful adversarial samples (lower is better). The vertical
line corresponds to CaFA’s cost bound (� = 1

30
).

Appendix C.
Additional Experimental Results

C.1. Cost Analysis

Here, we include a more fine-grained comparison of
attack costs. The measures were taken on the subset of suc-
cessful and feasible adversarial samples, having considered
the trade-off between the feasible success rate and the costs
in §6.3. We report the comparison over the standardized-l∞cost in Fig. 11 and over the l0 cost in Fig. 12.

C.2. Impact of Constraint Choice

Bank Dataset. A key trade-off lies between the feature-
space constraints and attacks’ feasible success. In general,
the larger the constraint sets, the more challenging attacks
are. To better understand this relationship, we explored
how attacks’ feasible success rates behave when varying
the number of constraints (thus, also attaining different
soundness-completeness tradeoffs). We first ran the analysis
on the bank dataset, running CaFA with varying constraint

0 0.2 0.4 0.6 0.8 1

adult

bank

phishing

MoEvA
C-PGD
PGD+SAT
TabPGD+SAT
CaFA

L0 Rate (of feasible & adv. samples)

D
at

as
et

Figure 12: The l0 cost of feasible and successful adversarial
samples (lower is better). To enable cross-dataset compar-
isons, we normalized values by the number of features.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Soundness
Completeness
F1
Feasible Success

Amount of DCs

Fe
as

ib
le

 S
uc

ce
ss

 R
at

e

F1
, 

S
ou

nd
ne

ss
, 

C
om

pl
et

en
es

s

Figure 13: Constraints’ quality and CaFA’s feasible success
rates for different choices of DC sets on the bank dataset.

sets by controlling the ndcs parameter. For each constraint
set, we measured feasible success, empirical soundness, and
completeness. The results are shown in Fig. 13.

We observed that, within the considered set sizes, the
constraint set quality (indicated by the F1 score) mostly
increases with the set size, reaching its highest value when
considering 5K constraints, the number of constraints used
in most of our experiments. This increase in F1 scores cor-
relates with a decrease in attack performance. For instance,
when using a constraint set with a 13% F1 score, CaFA
achieved a feasible success rate of ∼78%. Conversely, a
higher quality constraint set with an 80% F1 score leads to
a decline of feasible success rate to ∼30%. These findings
emphasize the challenging landscape posed by high-quality
constraints.

Phishing Dataset. Thus far, we have evaluated how
the choice of constraints impact soundness, completeness,
and feasible success rates on the bank dataset. To further
validate the findings, we report on a similar evaluation
with the phishing dataset. In this experiment, we used the
exact setting and measures considered for the bank dataset.
However, as no golden constraints were derived for the
phishing dataset in prior work, we derived those manually



ID Constraint Comp. Rate (%)

#1 x.NumNumericCℎars < x.UrlLengtℎ 100.0%
#2 (x.NumSensitiveW ords ∗ 2) < x.UrlLengtℎ 100.0%
#3 x.P ctNullSelfRedirectHyperlinks = 1 ⟹ x.P ctExtHyperlinks = 0 100.0%
#4 (x.P ctNullSelfRedirectHyperlinks + x.P ctExtHyperlinks) ≤ 1 99.9%
#5 x.P ctExtNullSelfRedirectHyperlinksRT = 1 ⟹ 100.0%x.P ctNullSelfRedirectHyperlinks + x.P ctExtHyperlinks < 0.3

TABLE 7: Manually derived golden constraints for the
phishing dataset. We describe each constraint relative to a
feature-space vector x ∈ X, and report the percentage of
samples from the dataset that comply with it.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Soundness
Completeness
F1
Feasible Success

Amount of DCs

Fe
as

ib
le

 S
uc

ce
ss

 R
at

e

F1
, 

S
ou

nd
ne

ss
, 

C
om

pl
et

en
es

s

Figure 14: Constraints’ quality and CaFA’s feasible success
rates for different choices of DC sets on the phishing dataset.

(see Tab. 7).
Fig. 14 reports the results. Consistent with the trends

observed with bank dataset, we note that the F1 score
increases as the size of the constraint set expands. We also
observe an inverse relationship between the size of the con-
straint set and the attack’s feasible success. Specifically, this
evaluation further justifies our choice of DCs configuration,
as determined by our analysis of the bank DCs (§6.1)—
this configuration, with ndcs=5K and ntuples=1 led to the
(roughly) highest of F1 score on the phishing dataset too.

C.3. Case Study: Evading Phishing Detector

In this study, exemplifying one of 11 samples5 inspected
in the case study (§6.6), we demonstrate a translation of
adversarial example attacks from the feature-space to the
real-world problem-space, using a real phishing website as
an example. Due to the absence of raw data of the phish-
ing dataset [13], we rely on a recently identified phishing
website taken from the PhishTank archive (Fig. 15). Using
this sample, we highlight the importance of CaFA’s threat
model (§3) in a realistic scenario.

First, we extracted the website’s features, by implement-
ing the feature-extraction logic (the dataset does not include
code for feature extraction). Subsequently, we employed
CaFA to generate an adversarial sample in the feature space
(see Tab. 8). This sample served as a recipe for modifying
5. PhishTank sample IDs: 8302119, 8307185, 8314314, 8309078,

8309085, 8310709, 8309529, 8309492, 8313454, 8313452, 8314312.

Figure 15: A phishing page for which we demonstrate an
evasion. The page was taken PhishTank (ID: 8302119). The
page tricks users to login to various services, such as Office
365, and sends their credentials to a malicious server.

UrlLength NumNumericChars ExtMetaScriptLinkRT SubmitInfoToEmai ...
x 112 15 0 False ...
x′ 113 14 0 True ...

TABLE 8: A real-world phishing website’s feature-space
instance, and its corresponding perturbed sample created
by CaFA. Perturbed features are boldfaced (we omit non-
perturbed features).

the original URL and HTML code to fool the ML-based
detector.

For example, following the recipe (Tab. 8) we adjusted
the website’s URL and HTML. Initially, we were required to
increase the length of the URL by one character (UrlLength),
while decreasing a single numerical character from it (Num-
NumericChars). Secondly, for the HTML, we were required
to introduce the mailto function (SubmitInfoToEmail). To
avoid affecting other features and to keep change imper-
ceptible to users, we simply inserted it in an unreachable
function in the JavaScript section. These minor alterations
were sufficient to deceive the detector, while the website
remained functional and visually identical.

C.4. Feasible Success Rates With DCs

In §6.2 we evaluated various attacks on the constrained-
feature-space imposed by DCs. We report the results of this
experiment in details in Tab. 9.

C.5. Feasible Success Rates With Valiant’s

In §6.5, we evaluated CaFA on the phishing dataset
while integrating Valiants’ constraints to enable comparison
with the work of Sheatsley et al. [43]. Tab. 10 reports results
on all datasets.



Model Dataset Attack C.Acc.? l0∣M∧C ↓ l∞∣M∧C ↓ M ↑ C ↑ M ∧ C ↑

MLP

phishing

TabPGD(1/30, Struc.) × 5.54 ±0.04 0.007±0.0003 99.80%±0.01% 19.43%±0.2% 19.33%±0.3%

TabPGD(1/30, Struc.) + SAT-Solver(1/30, DCs) 5.52 ±0.06 0.009±0.0002 78.53%±1.2% 88.46%±0.4% 67.03%±1.4%

TabPGD(1/30, Struc.) + Tab-CW-L0 × 2.07±0.01 0.0005±0.0003 94%±0.6% 49.56%±1.1% 47.43%±0.9%

TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 3.07±0.02 0.02±0.001 63.5%±0.9% 93.3%±1.0% 58.5%±1.4%

PGD × - - 100%±0% 0.30%±0.2% 0.30%±0.2%

PGD + SAT-Solver(1/30, DCs) - - 95.8.%±0.3% 6.5%±0.3% 2.3%±0.4%

C-PGD(DCs) - - 99.36%±0.2% 3.70%±0.7% 3.40%±0.7%

MoEvA2(Struc.) × 1.87±0.004 0.17±0.003 53.6%±0.1% 79.26%±0.003% 38.66%±0.2%

MoEvA2(Struc. and DCs) 2.03±0.01 0.20±0.004 57.0%±1.0% 80.16%±0.5% 43.46%±1.5%

bank

TabPGD(1/30, Struc.) × 6.173±0.14 0.012±0.0005 77.10%±1.8% 10.16%±0.4% 9.9%±0.5%

TabPGD(1/30, Struc.) + SAT-Solver(1/30, DCs) 6.67±0.13 0.015±0.0006 54.46%±2.1% 56.73%±0.2% 28.43%±1.2%

TabPGD(1/30, Struc.) + Tab-CW-L0 × 2.90±0.26 0.007±0.001 78.13%±1.9% 16.2%±0.6% 16.0%±0.7%

TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 4.07±0.3 0.012±0.0006 44.7%±2.3% 66.36%±0.2% 27.26%±1.3%

PGD × - - 100.0%±0.0% 4.93%±0.4% 4.93%±0.4%

PGD + SAT-Solver(1/30, DCs) 7.85±0.18 0.16±0.0001 30.9%±1.2% 48.46%±2.0% 14.1%±0.9%

C-PGD(DCs) - - 100.0%±0.0% 10.9%±0.4% 10.9%±0.4%

MoEvA2(Struc.) × 1.29±0.1 0.006±0.0008 20.73%±0.5% 66.40%±0.7% 8.43%±0.05%

MoEvA2(Struc. and DCs) 2.78±0.04 0.07±0.01 26.73%±1.2% 47.5%±0.4% 8.8%±0.05%

adult

TabPGD(1/30, Struc.) × 4.44±0.13 0.011±0.0008 86.63%±1.2% 16.7%±0.3% 16.3%±0.2%

TabPGD(1/30, Struc.) + SAT-Solver(1/30, DCs) 5.09±0.09 0.015±0.0006 72.63%±1.0% 54.03%±0.8% 32.5%±0.8%

TabPGD(1/30, Struc.) + Tab-CW-L0 × 2.32±0.18 0.007±0.007 87.53%±1.5% 20.8%±0.5% 20.36%±0.6%

TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 3.19±0.06 0.011±0.0003 65.16%±2.4% 61.7%±1.7% 32.4%±1.3%

PGD × - - 100.0%±0.0% 3.50%±0.1% 3.50%±0.1%

PGD + SAT-Solver(1/30, DCs) 9.71±0.54 0.01±0.002 65.06%±0.007% 21.16%±0.008% 8.50%±1.4%

C-PGD(DCs) - - 100.0%±0.0% 25.53%±2.8% 25.36%±2.8%

MoEvA2(Struc.) × 3.30±0.24 0.03±0.003 52.96%±0.7% 49.33%±0.8% 18.4%±0.5%

MoEvA2(Struc. and DCs) 5.95±0.23 0.09±0.004 58.10%±0.9% 47.06%±0.6% 20.5%±1.5%

TabNet

adult

TabPGD(1/30, Struc.) + Tab-CW-L0 × 1.35 0.001 82.0% 22.2% 22.0%
TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 3.81 0.011 71.5% 60.0% 43.7%
MoEvA2(Struc.) × 1.92 0.048 56.9% 58.5% 27.2%
MoEvA2(Struc. and DCs) 3.74 0.088 61.2% 57.9% 30.7%

phishing

TabPGD(1/30, Struc.) + Tab-CW-L0 × 3.28 0.01 83.7% 32.6% 30.0%
TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 3.7 0.05 46.1% 93.6% 44.1%
MoEvA2(Struc.) × 1.90 0.16 55.7% 71.5% 33.5%
MoEvA2(Struc. and DCs) 1.99 0.22 52.7% 79.0% 37.3%

bank

TabPGD(1/30, Struc.) + Tab-CW-L0 × 2.52 0.003 52.5% 10.0% 9.2%
TabPGD(1/30, Struc.) + Tab-CW-L0 + SAT-Solver(1/30, DCs) 4.58 0.009 48.0% 42.6% 17.6%
MoEvA2(Struc.) × 1.16 0.027 21.0% 66.8% 7.8%
MoEvA2(Struc. and DCs) 2.12 0.193 27.8% 62.3% 12.6%

TABLE 9: Evaluation of our adversarial tabular attack variants (CaFA), compared to other attacks. For each attack,
we mention the used parameters/information in parentheses by AttackName(�, Constraints) (where � stands for the
standardized-l∞, and constraints names the type of constraints incorporated). We also state whether the attack used access
to constraints (C. Acc.?) Then, we compare the l0 difference from the original sample (l0) averaged over the realizable and
successfully mislcassified adversarial samples, the average standardized- l∞ on the same subset (l∞), the miss-classification
rate (M), the compliance with the DCs (C) and finally the combination of the latter two, which means the rate of realizable
adversarial samples (M ∧ S). The best-performing attack, for each dataset and model, is marked with bold, and under the
setting with no access to constraints we mark the best-performing attack with underline.

Full Attacks Disabling Access
Dataset Attack Comp. Comp. & Mis. Comp. Comp. & Mis.

phishing
PGD 100% 67.1% 3.3% 3.3%
TabPGD 100% 82.5% 54.9% 54.7%
TabPGD+CWL0 100% 87.6% 77.7% 77.7%

bank
PGD 100% 26.9% 54.3% 54.3%
TabPGD 100% 88.5% 69.9% 66.9%
TabPGD+CWL0 100% 87.8% 71.8% 68.2%

adult
PGD 100% 51.2% 24.5% 24.5%
TabPGD 100% 82.7% 91.8% 79%
TabPGD+CWL0 100% 83.2% 92% 79.9%

TABLE 10: Attacking with Valiant’s constraints, reporting
the compliance with the constraints (Comp.) and feasible
success rate (Comp. and Mis.) on the full attacks and when
disabling access to Valiant’s constraints.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

In this paper, the authors investigate the vulnerability
of machine learning models in domains with constraints.
The authors propose an approach built from a series of
algorithms for robustness evaluations, namely, mining con-
straints, enforcing datatype constraints during crafting, and
projecting examples to comply with the learned domain
constraints. Specifically, the authors propose using denial
constraints to mine constraints from examples, integrating
datatype constraints during the adversarial crafting process,
and using SAT solvers (when necessary) to project invalid
examples onto a constraint-complaint space. In their eval-
uation, the authors investigate robustness evaluations with
3 datasets, against existing baselines, and observe various
performance curves of constraint-learning configurations
showing constraint-complaint adversarial examples can be
often found.

D.2. Scientific Contributions

∙ Independent Confirmation of Important Results with
Limited Prior Research.

∙ Creates a New Tool to Enable Future Science.
∙ Provides a Valuable Step Forward in an Established
Field.

D.3. Reasons for Acceptance

1) This paper provides a valuable step forward in an es-
tablished field. Specifically, the authors develop CaFA
to craft adversarial examples while satisfying mined
constraints.

2) Experimental results demonstrate that CaFA achieves a
higher (feasible) attack success rate with lower attack
costs compared to existing attacks, including PGD, C-
PGD, and MoEvA2.


	Introduction
	Background and Related Work
	Evasion Attacks
	Challenges of Feature-Space Attacks
	Data-Integrity Constraints
	Structure Constraints
	Relation Constraints

	Existing Attacks on Tabular Datasets

	Threat Model
	Technical Approach
	Mining Constraints
	Perturbing Samples
	Heterogeneous Cost
	Structure Constraints
	TabPGD's Algorithm
	CWL0 Variant

	Projecting on Relation Constraints

	Experimental Setup
	Metrics
	Constraint Metrics
	Attack Metrics

	Datasets
	ML Models
	Constraints
	Evaluated Attacks

	Experimental Results
	Constraints' Quality
	Feasible Attack Success
	Attacking MLPs
	Attacking TabNets

	Attack Cost
	Attack Run-Time
	Feasible Success With Valiant's Constraints
	Case Study: Evading Phishing Detection

	Discussion
	Conclusion
	References
	Appendix A: Additional Technical Details
	Valiant's Constraints
	Ranking DCs

	Appendix B: Additional Experimental Setup Details
	Appendix C: Additional Experimental Results
	Cost Analysis
	Impact of Constraint Choice
	Case Study: Evading Phishing Detector
	Feasible Success Rates With DCs
	Feasible Success Rates With Valiant's

	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance


