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Abstract—The increasing complexity of attacks has given rise
to varied security applications tackling profound tasks, ranging
from alert triage to attack reconstruction. Yet, security prod-
ucts, such as Endpoint Detection and Response, bring together
applications that are developed in isolation, trigger many false
positives, miss actual attacks, and produce limited labels useful
in supervised learning schemes. To address these challenges, we
propose DrSec—a system employing self-supervised learning
to pre-train foundation language models (LMs) that ingest
event-sequence data and emit distributed representations for
processes. Once pre-trained, the LMs can be adapted to solve
different downstream tasks with limited to no supervision,
helping unify the currently fractured application ecosystem.
We trained DrSec with two LM types on a real-world dataset
containing ∼91M processes and ∼2.55B events, and tested it in
three application domains. We found that DrSec enables accu-
rate, unsupervised process identification; outperforms leading
methods on alert triage to reduce alert fatigue (e.g., 75.11%
vs. ≤64.31% precision-recall area under curve); and accurately
learns expert-developed rules, allowing tuning incident detec-
tors to control false positives and negatives.

Index Terms—Endpoint security, EDR, language models, self-
supervision, alert triage, process identification

1. Introduction

In response to the increasing sophistication of ad-
vanced threats, the complexity of the enterprise-security
software ecosystem is growing rapidly. As low-level func-
tions such as intrusion detection have proven insufficient
to successfully defend organizations, today’s products are
also expected to effectively prioritize and triage detections
(e.g., [57]), construct unified explanations of suspicious in-
cidents (e.g., [15]), enrich system-event activity with context
(e.g., [66]), and more. This complexity is also reflected in
recent academic research, which recently began to investi-
gate these specific tasks (e.g., attack-story reconstruction [4],
[41], [68], alert triage [25], [26], [38]). As is especially evi-
dent in the literature, learning-based approaches are quickly
supplanting traditional rule- and signature-based techniques
as a means of providing necessary functions.

In spite of the diversity of these security functions, each
ultimately operates over system-level events collected by

endpoint sensors. Consider traditional Endpoint Detection
and Response (EDR) deployments, which largely make use
of heuristic/rule-based detection models. The endpoint sen-
sors will collect streams of system events that are grouped
by process and subsequently matched against pre-defined
rules. For example, when a user deletes a file, a rule may
be triggered based on the MITRE ATT&CK technique “File
Deletion” [39]. Naturally, while this captures some mali-
cious behavior (e.g., ransomware), it is also a source for
false positive alerts as many benign processes also delete
user-created files (e.g., disk clean-up tools). Therefore, some
applications may also rely on automated approaches for
specific sub-tasks; for instance, EDR systems often use rule-
based alert detection, but may augment this with ways to
address the problem of having too many false positives to
effectively triage the alerts [1], [10], [56].

However, there are a number of challenges faced by
such automated approaches, which often involve learned
models. First, as highlighted by the file deletion example, it
is important to understand how the sequence of past events
(or their causal relationship) affects the interpretation of
the current event. Second, specialized models often require
significant feature engineering as well as large amounts
of labeled training data to adequately train models. These
involve substantial human effort (and thus incur high cost).
Finally, while all of these applications are enabled through
the same telemetry streams (i.e., process events), they are
typically implemented in an ad-hoc manner without account-
ing for any overlapping requirements.

Our insight is that if we pre-train language models (LMs)
to represent processes, we could easily fine-tune them for
various downstream tasks. Our inspiration comes from ad-
vances in the natural language processing (NLP) domain; we
explore if a similar approach can be applied to the security
domain. The benefits we can derive from this approach
can address many of the problems and challenges faced by
various security applications. Instead of developing ad-hoc,
end-to-end models for each application, we can instead reuse
the LM as the core, foundation model [11]. Not only does
this avoid (costly) manual feature development, but it also
requires less labeled training data when fine-tuning for the
specific task while maintaining an equivalent of accuracy.

In this paper, we present DrSec, our system for pre-
training and fine-tuning LMs for use in a variety of security



applications. We develop an expressive, yet concise, vocab-
ulary to map process-level events (and their properties) to
sequences of tokens that serve as input to the LM. This
vocabulary is based on the set of events collected by a large,
popular, commercial EDR system. Using a large dataset
of (unlabeled) tokenized sequences for processes, DrSec
pre-trains the LM in an unsupervised manner with a self-
supervised approach that attempts to predict the masked
tokens given their neighbors. Given a specific security task
which augments the pre-trained LM, DrSec can fine-tune
the LM weights (and train the output layers) using a small
amount of labeled training data associated with the specific
task; alternatively, DrSec can be used in an unsupervised
manner based on the representations it outputs.

In a nutshell, we make the following contributions:
1) We design and implement DrSec, a system lever-

aging self-supervised learning of LMs to create dis-
tributed representations summarizing process behavior.
The LMs can then serve as a common foundation unify-
ing the development of different security applications.
Specifically, the process representations produced by
the LMs can be used in different learning schemes, in
an unsupervised fashion or with limited labeled data
for fine-tuning, to address varied security tasks.

2) We apply DrSec to three security tasks: process
identification, alert triage, and EDR-rule learning. Us-
ing a real-world dataset containing ∼2.55B events per-
taining to ∼91M processes, we pre-trained two LM
types (Doc2Vec [32] and transformers [65]) to instan-
tiate two DrSec variants. Subsequently, we tested the
resulting distributed representations in security tasks.
The experimental results demonstrate that DrSec can
enable accurate process identification, outperform lead-
ing methods on alert triage, and facilitate learning
expert-developed rules.

Next, we provide necessary background and describe
the threat model (§2–3). Then, we present an overview of
DrSec before diving to its technical details and design (§4–
5). Afterward, we present our evaluation of DrSec (§6)
and discuss the findings and open problems (§7). Finally,
we discuss related work (§8) and conclude (§9).

2. Background and Motivation

We begin by considering the state of the art in endpoint
security, grounding our discussion in Carbon Black’s major
commercial EDR product [66]. Carbon Black provides an
integrated EDR product offering detection and investigation
capabilities, as well as security information and event man-
agement (SIEM) support [8]. The software architecture is
comprised of distributed endpoint sensors and a cloud-based
platform for configuration and analysis.

Like most commercial EDR solutions, this system pri-
marily performs heuristic/rule-based detection. In rule-based
detection systems, queries are defined by first- or third-party
analysts that encode known malicious behaviors. These de-
tection queries are annotated with additional useful context,
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Figure 1: Event-type frequency. The percentage of events
belonging to each event type in DLarge.

such as natural language descriptions of the attack behav-
ior and pointers to associated techniques in the MITRE
ATT&CK framework [40]. At the time of this writing, EDR
provides over 2,000 possible detection queries to customers
that are organized into sets of company- and community-
defined lists. Customers are able to configure their EDR
deployments to alert on any of these queries, and even define
their own. The use of rule-based detection queries is not the
primary focus of our work, although we will demonstrate
how our system and interoperate and enrich alert streams.

The detection mechanisms in EDRs perform pattern
matching over endpoint telemetry data; when an alert fires,
this telemetry can then be reviewed by analysts to investigate
the incident. Endpoint telemetry is primarily comprised by
system-event logs that are collected via commodity oper-
ating system (OS) audit frameworks–e.g., Event Tracing
for Windows or Linux audit–but individual events can also
be enriched with additional information such as whether
a program’s executable was signed by a trusted developer.
Lastly, many EDRs have the ability to export telemetry logs
for further analysis; we use this feature of Carbon Black’s
EDR to generate evaluation datasets for this study.

Specifically, our system makes use of the following
enriched event-telemetry attributes:
• Network Event telemetry carries five attributes describing

the destination port, the domain name, the domain’s pop-
ularity per the Tranco ranking [44], the top-level domain
(TLD), and the transport protocol.

• Process-Creation Event telemetry contains information
about the binary’s SHA-256 hash, signature status, and
reputation, as well as a process security identifier indicat-
ing the user group the process runs under.

• File-Access Events telemetry reports a combination of
flags detailing whether the file or its attributes were mod-
ified, the file type (data or executable), whether the file
was encountered by the sensor for the first time, and the
file’s location (on a fixed, removable, or network drive).

• API-Call Event telemetry reports the OS API function
called by a process.

• Registry-Access Event telemetry reports the registry value
accessed.

2.1. Endpoint Telemetry Characterization

To gain a better sense of the relative contributions of
these event types, we present a characterization of a large
dataset, DLarge, that contains telemetry data collected by
a large EDR vendor. This dataset was created sampling
the events for ∼42k processes per hour over three months
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Figure 2: Prevalence of event attributes. Distributions of attribute values in the telemetry events in DLarge.

(04/27/2021 to 07/26/2021) across all customer endpoints
running a Windows OS. For each process, we collected all
events from within the hour it was sampled from. In total,
the dataset describes ∼91M processes and ∼2.55B events.
Fig. 1 reports the prevalence of each event type. Network
and process creation events are most common in the dataset,
comprising 35.50% and 34.49% of all events, respectively.
File accesses are least common, comprising 8.39% of events.

Fig. 2 depicts the event attributes and the distributions
of their values. Network-event attributes are described in
Figs. 2a–2e. The 443 TCP destination port is most com-
monly encountered (53.92% of events), showcasing the
prevalence of HTTPS, but other ports such as 7680 (Win-
dows Update Delivery Optimization), 389 (LDAP), and 80
(HTTP), are also common (≥2.97%). The distribution of
domain names is less skewed, with 183 domains and IP
addresses receiving roughly half the traffic. As expected,
most traffic (46.59%) flows to top-100 domains, and mostly
(78.13%) to the .com TLD (out of 33,064 TLDs encoun-
tered). Only the TCP and UDP transport protocols are moni-
tored by the telemetry, and TCP is more prevalent (78.69%).

Process-creation attributes are described in Figs. 2f–2i.
The process hashes follow a power-law distribution, with
1,399 hashes of the unique 1.84M encountered accounting
for >90% of events. Hashes pertaining to common system
(e.g., svchost.exe and taskhostw.exe) and user
(e.g., the Chrome browser and Microsoft Office) processes
are highly prevalent. Most binaries (79.43%) are signed
by a trusted certificate authority and successfully verified,
while others are not signed (20.51%), signed by an un-
trusted authority (5.90%), signed but not successfully veri-

fied (<0.01%), or have invalid signatures (<0.01%). Most
processes created are found on an allow list (92.82%), while
some are unlisted (7.18%) or blocked by the company’s or
the EDR provider’s policy (0.03%). Finally, the SIDs indi-
cate that most created processes run with system (51.04%
with SID 18) or user (36.89% with SID 21) privileges.

File-access, API-call, and Registry-access attributes
are described in Figs. 2j–2l. Analyzing the file access
flag combinations, we can see that there are 42 flag
combinations encountered, with modifications of files on
a fixed drive accounting for 84% of events. We ob-
served 77 different API-calls with the 14 most com-
mon ones (e.g., FindFirstFileExW for file search and
CreateWindowExW for window creation) accounting for
>90% of events. Finally, analysis of registry-access values
shows the distribution of values is skewed, with >80% of
events containing only one of 92 unique values.

2.2. Challenges in Endpoint Security

Having reviewed EDR features and characterized a rep-
resentative sample of event telemetry data, we now consider
some of the central challenges in endpoint security today.

Interpreting Event Attributes. As Fig. 2 highlights,
many security-sensitive event attributes–process hashes, API
call types, etc.–can be difficult to interpret. Crucially, the
importance of a given attribute highly depends on its value,
including attributes that may include tens or hundreds of
thousands of different possible values. Ultimately, the high
dimensionality of these attributes places great cognitive bur-
den and domain-expertise demands on human analysts, and
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Figure 3: Overview of DrSec. (0) Endpoint devices contribute event telemetry data collected by sensors. (1) DrSec
pre-processes the data to map events to sequences of tokens as input to the LM. (2) DrSec pre-trains the LM in a self-
supervised manner over the token sequences. (3) DrSec specializes the LM for specific security-related application (e.g.,
alert triage) through fine-tuning over a limited dataset.

may make it difficult for machine-learning (ML) approaches
to converge to useful models.

A Fractured Ecosystem of Security Applications. We
have referenced a variety of important security applications
include threat detection, threat investigation, alert manage-
ment (i.e., SIEM), and incident response. While all of these
applications are fundamentally enabled by the same teleme-
try streams, they are typically implemented in isolation
without regard for their overlapping requirements.

Alert Fatigue (Too Many False Positives). EDR prod-
ucts are prone to generating an unmanageable number of
threat alerts [1], [10], [56]. FireEye reports that large enter-
prises may receive tens of thousands of alerts per week, with
the majority being false positives [19]. This causes many
alerts to go uninvestigated or underinvestigated, leading to
incidents where an attack is detected by the EDR but never
responded to by analysts (e.g., the Target data breach [45]).
Further, even when alerts are properly investigated, false
alerts simply waste analysts’ time at reported rates of 10-40
minutes per alert [1], [10].

Missed Detections (Too Many False Negatives). It is
also very possible for even state-of-the-art EDRs to fail to
detect sophisticated intrusion behaviors. Structurally, rule-
based detection systems are only able to identify known at-
tacker behaviors, such that a novel attack vector or zero day
attack may be unanticipated by the EDR’s detection queries.
Along similar lines, it is also possible for an intrusion to
be nominally detected, but only by queries associated with
lower severity or confidence scores. As a result of threat
alert fatigue, these true alerts may blend into the noise of
false alarms and go unnoticed.

Limited Labeled Data. Due to the sheer amounts of
process and event telemetry collected, only a negligible
fraction of data is manually inspected by experts. For ex-
ample, according to conservative estimates, a cyber analyst
can investigate roughly three alarms per hour [1], [10],
[26]. By contrast, Carbon Black’s EDR collects data from
�42k processes per hour. Thus, security applications in-
gesting telemetry data (e.g., for alert triage [64]) need to
be extremely (labeled) data efficient, or, alternately, operate
without labeled data (e.g., in clustering schemes) [55].

In this work, we make progress towards addressing these
grand challenges through DrSec. DrSec produces LMs

that reduce the dimensionality of event attributes through
a concise vocabulary, enabling easier analysis of teleme-
try. Through the creation of this pre-trained LM, DrSec
provides a unified intermediate representation of telemetry
data for use in a variety of security applications. We show
that DrSec can be used to mitigate the shortcoming of
rule-based detection engines, providing applications such as
alert triage or process identification that are not captured by
EDR queries. To our knowledge, DrSec is the first system
tackling all five crucial challenges simultaneously.

3. Threat Model

Our deployment model adopts the same deployment and
threat models as commercial EDRs. Sensors that generate
telemetry data are deployed on device endpoints. As is the
case with commercial products, we assume that adversaries
can compromise machines but cannot disable or violate the
integrity of endpoint sensors. In practice, tampering with
sensors is a risky proposition; any disruption could imme-
diately trigger a high severity alert, and developers follow
strict standards to protect sensors from compromise. We
assume a cloud-based analytics model in which telemetry
is transmitted to central (trusted) servers for analysis.

Our solution introduces ML tasks to detection systems
that were previously rule-based, potentially expanding the
attack surface of the EDR. The adversary may attempt to
poison training data to induce false negatives in downstream
applications. Alternately, the attacker may be able to induce
false negatives by patterning their own behaviors to match
those of known applications (i.e., mimicry attacks [67]). We
consider the feasibility of such attacks in §6.5.

4. Overview

Fig. 3 provides a high-level overview of DrSec’s work-
flow. Initially, telemetry data is collected by sensors running
on a large number of endpoint devices and, optionally,
multiple organizations. The raw telemetry data consists of
process-level events such as opening new network connec-
tions, creating a child process, or filesystem accesses.

The DrSec workflow begins by (1) pre-processing the
telemetry data to transform sequences of events for a specific



process into sequences of tokens that can be ingested by the
LM. We use a vocabulary developed out-of-band; similarly
to the NLP domain [31], [32], we construct the vocabulary
carefully by deriving specific tokens for common events
and event properties, and mapping uncommon events to
generic tokens. The resulting vocabulary should balance
being sufficiently descriptive to differentiate between dif-
ferent processes (e.g., malicious and benign), while also
constrained enough to ensure the resulting LM is space-
and time-efficient. The flexibility in the vocabulary allows
DrSec to adapt to arbitrary endpoint sensor technologies.

Next, DrSec (2) pre-trains the LM in an unsupervised
manner. Pre-training follows self-supervised schemes that
leverage the existing structure within the data to produce
pseudo-labels, which are then used to derive meaningful
distributed representations for processes and events. For ex-
ample, in the NLP domain, pseudo-labels could be computed
by examining a window of n tokens and attempting to
predict the subsequent token. LMs trained via such schemes
have been found to learn representations that capture the
semantics of sentences and documents [17], [32], [37]. We
expect that self-supervised LMs can also capture the se-
mantics of processes by taking advantage of the correlations
between events and event properties.

Once trained, DrSec enables (3) the application of
the LM to various downstream security applications, such
as alert triage and malware detection. This involves fine-
tuning by extending the pre-trained model and using limited
amounts of labeled data that are specific to the down-
stream application (e.g., dataset containing processes with
benign and malicious processes). Note that fine-tuning is
not always necessary if the representations from the LM
can be used directly in the application (e.g., for process
identification). We use the term fine-tuning broadly to refer
to two approaches: 1) training a smaller model on the LM’s
distributed representations, and 2) attaching a classifier on
top of the LM and adjusting the weights via end-to-end
training with the labeled dataset.

5. Technical Approach

We now detail the three primary stages of DrSec. We
begin with how we abstract events and processes for inges-
tion by DrSec LMs (§5.1). Next, we describe how we train
LMs in a self-supervised manner (§5.2). Then, we explain
how we use LMs for specific applications, potentially after
adaptation using a minimal labeled dataset (§5.3).

5.1. Abstracting Events and Processes

Central to our work is the insight that processes and
their event sequences can be viewed as a language. In return,
this language can be modeled via LMs, producing flexible
distributed representations to address downstream computer-
security problems. Consider the example of the Microsoft
Word process and its corresponding events presented in
Tables 1–2, which will serve as a running example for the re-
mainder of this section. In this example, the winword.exe

Name Sign. Reputation Security ID

Process winword.exe S&V Allow list S-1-5-<#>
Parent explorer.exe S&V Allow list S-1-5-<#>

TABLE 1: Example. Available telemetry for a winword.exe
process and its parent. S&V stands for signed and verified.

# Type Details

1 API Function: SetClipboardViewer

2 File Flags: CREATE

3 Network

DestPort: 443
Domain: nexus.officeapps.live.com
Popularity: TOP_100
TLD: .com
Protocol: TCP

TABLE 2: Example. Events exhibited by winword.exe.

(i.e., Microsoft Word) program is executed with user privi-
leges, as reflected by the Windows security ID [36]. Fur-
thermore, we can notice that this program is placed on
an allow list by the EDR provider, and that it has been
(cryptographically) signed by the developer and successfully
verified by the OS. The winword.exe process was created
by Microsoft’s program manager, explorer.exe, that is
also signed and placed on an allow list, and runs under
user privileges. As shown in Table 2, the winword.exe
process exhibits a sequence of three events. First, it calls
the SetClipboardViewer API to register to clipboard
events. Second, it creates a new file for writing. Third, it
connects to the Microsoft-owned domain, via TCP on port
443 (i.e., HTTPS). We can also see that this domain is highly
popular, as it pertains to the top 100 most popular domains.
The process, parent, and events (and their properties) follow
a strict structure. The formal (regular) language presented
in this section can capture these details.

The language we design to represent processes seeks to
strike a good balance between two competing properties.
On the one hand, it aims to remain sufficiently descriptive
to distinguish different processes and their behaviors (e.g.,
benign and malicious) apart. On the other hand, it seeks
to be abstract enough to make it amenable to modeling
via LMs. One way to control the complexity is by limiting
the size of the vocabulary: if the vocabulary is too large
such that certain tokens appear only a few times during
training, the LM would fail to capture their semantics. By
contrast, if the vocabulary is too small, then it would become
challenging to represent semantically different expressions.
Indeed, abstractions are widely used in domains where
LMs are often applied. For instance, in NLP, stop words
(e.g., words like “the” or “to”) are sometimes removed
to facilitate learning with little-to-no impact on sentence
semantics [48]. In this work, we abstract process and event
details to DrSec by following the standard practice of
including unique tokens to represent only the most prevalent
details in the vocabulary [31], [32]. Specifically, we rely on
our data characterization (§2.1) to ensure the most frequent
event details are captured by the vocabulary.



1 S → Sproc · Sparent · (Enet |Ecproc |Efile |Eapi |Ereg)
∗

2 Sproc → Aphash ·Asign ·Arep ·Asecid

3 Sparent → Aphash ·Asign ·Arep ·Asecid

4 Enet → EVT_TP_0 ·Adport ·Afqdn ·Apop ·Atld ·Aproto

5 Ecproc → EVT_TP_1 ·Aphash ·Asign ·Arep ·Asecid

6 Efile → EVT_TP_2 ·Aacctype

7 Eapi → EVT_TP_3 ·Afname

8 Ereg → EVT_TP_4 ·Aregval

Figure 4: The process abstraction-language defined as a
regular grammar. Used to balance between the descrip-
tiveness and generalizability of raw telemetry streams.

5.1.1. Overall Abstraction. Given the available process and
event details studied in §2, we present a regular grammar
to represent processes as an abstract language. Once repre-
sented by an expression in this language, it may be impos-
sible to entirely recreate the process and event details (i.e.,
the abstraction is not invertible). However, as demonstrated
in experiments (§6), the language is sufficiently detailed to
capture key process behavior.

Fig. 4 presents the abstraction language’s grammar. Ex-
pressions describing processes in this language start with
preambles summarizing processes’ and their parents’ proper-
ties (non-terminal symbols Sproc and Sparent , respectively).
These consist of tokens (a.k.a. terminal symbols) describing
the process hash (Aphash ), signature status (Asign ), reputa-
tion (Arep), and security identifier (Asecid ). Following the
preambles, the expressions contain a sequence of tokens
capturing event types (EVT_TP_X) and their corresponding
details. For network events (Enet ), the language includes to-
kens describing the destination port (Adport ), domain name
or IP address (Afqdn ), the domain popularity (Apop), the
top-level domain (Atld ), and the network protocol (Aproto);
for process-creation events (Ecproc), details such as process
hash, signature status, reputation, and security identifier are
captured in the language; for files accesses (Efile ), the lan-
guage encodes information about the access type (Aacctype );
for API function calls (Eapi ), the function name (Afname )
is included; while for registry accesses, the registry value
(Aregval ) is appended. Note that the size of the vocabulary
is limited by the number of unique values that terminal
symbols (e.g., Afqdn ) admit.

PROC_HASH_2831 SIGN_STAT_0 PROC_REP_0 PROC_SECID_3 PROC_HASH_850

SIGN_STAT_0 PROC_REP_0 PROC_SECID_3 EVT_TP_3 API_func_38 EVT_TP_2

FILE_flags_2 EVT_TP_0 NET_dport_6 NET_fqdn_185 NET_fqdn_pop_2

NET_tld_10 NET_proto_1

Process Preamble

1 2

3 4

…
5

1 Parent Preamble2 Event 13 Event 24 Event 35

Figure 5: Running example. Abstraction of the Microsoft
Word process from Tables 1–2.

Fig. 5 illustrates an abstraction of the Microsoft Word
process and its corresponding events from the running exam-
ple (Tables 1–2) using the proposed language. Notice how
the telemetry data (e.g., the domain name from Table 1)
are mapped to tokens within the language’s vocabulary.
Also note how the expression resulting from concatenating

the tokens is accepted by the language in Fig. 4. This
expression can be ingested by LM for training or producing
a distributed representation of the process at inference time.

While we designed this grammar for a particular EDR
telemetry-stream, this approach is a general means for de-
scribing processes and their behavior as a language. In par-
ticular, we emphasize that the language can be extended to
encode new event types and event attributes by introducing
new symbols. Furthermore, by configuring the vocabulary
size (i.e., the unique terminal symbols included in the lan-
guage), one can control the fidelity in which expressions in
the language represent processes.

5.2. Self-supervised LM Training

We consider two LM types, one based on Doc2Vec [32]
and another based on transformers [65]. The former repre-
sents a family of models that were popular between circa
early 2010s. Transformers, on the other hand, constitute an
advanced neural network architecture driving some of the
most transformative results in ML in recent years, including
the GPT models used for language generation [11], and
AlphaFold, which has revolutionized protein-structure
prediction [30]. By considering both classic and state-of-
the-art models, our work enables evaluating whether recent
advances in NLP translate to the security domain. Addition-
ally, because Doc2Vec models are typically more computa-
tionally efficient than transformers and less dependent on the
availability of dedicated hardware (e.g., GPUs), evaluating
both model types allows us to explore the possibility of
attaining good performance with limited compute resources.

5.2.1. Doc2Vec. Similarly to standard LMs, given a win-
dow of n tokens, the training objective of Doc2Vec is
to predict the n+1th token [32]. Doc2Vec’s so-called dis-
tributed memory model, can be seen as a neural network
of three layers. The first layer embeds each of the n to-
kens to a vector space and creates an embedding for the
entire sequence (i.e., document). The sequence embedding
introduces context useful for predicting the n+1th token. The
second layer aggregates the sequence and token embeddings
via averaging. Lastly, the third layer feeds the aggregated
embeddings to a logistic classifier to predict the next token.
At training time, different token sequences and windows are
used, and all embeddings are updated via an optimizer to
improve the prediction of the next word. During inference,
the parameters are frozen except those of the sequence em-
bedding, which are updated by the optimizer. This sequence
embedding is then used for downstream tasks.

5.2.2. Transformers. The transformer architecture is
widely used to learn distributed representations [65]. Train-
ing transformers typically follows the masked-LM self-
supervised training task where the goal is to predict the iden-
tity of a randomly selected subset of masked tokens [17],
[34]. Given an input token sequence, a subset of tokens
is first selected for masking at random. Additionally, the
beginning and end of the sequence are marked via special



tokens. The resulting sequence is then ingested by the
transformer model, embedding tokens in a vector space,
adding positional information, and passing them through
several stages of encoding and decoding. The transformer’s
output is composed of multiple embeddings, one per input
token. As part of the self-supervised training tasks, an
optimizer updates the transformer’s parameters such that
the true masked tokens are more accurately predicted given
the mask embeddings. At inference time, the embedding of
the special start-of-sentence token is used as the distributed
representation for the entire sequence. We use the RoBERTa
transformer model [34], a variant of the popular BERT
model [17] whose training procedure is more stable.

5.3. Fine-Tuning and Application

After self-supervised training, the distributed represen-
tations can be leveraged in downstream tasks. For clas-
sification tasks where labeled datasets are available (e.g.,
alert triage), DrSec trains or fine-tunes an ML classifier
in a supervised manner, following standard practices [17],
[32], to solve the task. For Doc2Vec, the classifier (e.g.,
random forest [9] or support vector machine [14]) takes
the distributed representations as input, and is trained from
scratch to predict the label. For the transformer, we attach
a shallow neural network classifier that takes the distributed
representation of the start-of-sentence token as input, and
fine-tune the model end-to-end with the labeled data. In cer-
tain applications (e.g., process identification), labeled data
may be unnecessary or unavailable. For those, we simply
use DrSec’s distributed representations in a completely
unsupervised manner, without fine tuning, to solve the tasks.

6. Evaluation

We now present our evaluation of DrSec. After de-
scribing our experimental setup (§6.1), we consider the use
of DrSec in three complementary security applications in
a threat-hunting environment: process identification (§6.2),
alert triage (§6.3), and EDR rule learning (§6.4). We close
the section with a security analysis of DrSec against attacks
threatening its integrity (§6.5).

6.1. Experimental Set-Up

We evaluate two variants of DrSec: one using
Doc2Vec (DrSecDoc2Vec) and another using a RoBERTa
transformer (DrSecRoBERTa). We pre-trained both models
on a large-scale dataset, DLarge. For both models we used a
vocabulary size of 50K, keeping only the most common
tokens in DLarge. This is in line with vocabulary sizes
commonly used in NLP [32]. According to our telemetry
characterization (§2.1), the most common 50K tokens ac-
count for 98.72% of events and event attributes in DLarge,
leaving only a small fraction of event attributes (1.28%) to
be represented by generic tokens signifying they are rare.

For Doc2Vec, we made use of the Gensim imple-
mentation [21]. To select parameter values, we withheld

a small portion of the dataset (∼73K processes) and con-
ducted a grid search to select the model hyperparameters
that attain best next-word prediction accuracy with limited
training effort. This led us to select a window size of five,
representation dimensionality of 200, and ten pre-training
epochs. Other parameters were set to Gensim’s defaults.
Pre-training occurred on a machine with an 48-core Intel
Xeon 8175M CPU and 192GB of RAM. Completing pre-
training on this machine took less than two days.

For RoBERTa, we used the Hugging Face imple-
mentation [29]. We used the default model parameters
of the RoBERTa-base model, producing distributed repre-
sentations of 768 dimensions. Because transformers have
quadratic space and time complexity in sequence length,
we trimmed the input sequence length to 384, keeping only
prefixes, to make training feasible on our hardware. We pre-
trained the RoBERTa model for one epoch on a machine
equipped with an eight core Intel Xeon E5-2686 CPU, 64GB
of RAM, and an Nvidia Tesla V100 GPU containing 16GB
of memory. Pre-training the model took seven days.

6.1.1. Baselines. We used three systems for baseline com-
parisons. Unlike DrSec, two of the systems (specifically,
DeepCase and TTP) are bespoke to alert triage, so they
are not used in all experiments. The last system, relying on
term frequency, is used in all experiments.

DeepCase Proposed by van Ede et al. [64],
DeepCase is a semi-supervised learning system for alert
triage. Similarly to DrSec, DeepCase first learns repre-
sentations of event sequences in a self-supervised manner.
DeepCase representations are learned using a recurrent
neural network with an attention layer. The network in-
gests an input sequence, one token at a time, and outputs
positive weights summing up to one for each event in the
sequence. The weights are then summed up per token type,
creating a vector to represent the sequence (dimensionality
of vocabulary size). The weights of the model are optimized
during training to enable predicting the next token, given its
preceding sequence. The resultant vector representation are
then used in a supervised-learning scheme for alert triage.

The original DeepCase work used a vocabulary size
of 291 for event abstraction and an input-sequence length
of 10. We used different abstractions of events (e.g., by
encoding or not encoding the popularity of visited websites
in network events) and compiled vocabularies of sizes 139,
337, and 354. Additionally, we tested varied input lengths
∈ {10, 20, 30, 40}. Using the author’s original implemen-
tation and model architecture, we pre-trained DeepCase
on DLarge using all hyperparameter combinations, finding
that the largest vocabulary (354 tokens) and input-sequence
length (40) achieved marginally better results than other
options. Accordingly, we report DeepCase performance
using these best-performing hyperparameters. Note that
DeepCase relies on a different LM architecture and event
abstractions that are much less descriptive than DrSec’s
(e.g., vocabulary size of 354 versus 50K in DrSec).

TTP . As a naı̈ve alternative for merging rule- and
learning-based detection, we also evaluated DrSec’s alert-



triage application against a random forest classifier that
takes as input a feature vector of Tactics, Techniques, and
Procedures (TTPs) rules [70] matched against processes and
attempts to predict whether alerts are true or false alarms.
The feature vector indicates whether a TTP was exhibited
by a process or not (i.e., a feature corresponding to a
TTP is set to 1 if the TTP was exhibited by the process,
and 0 otherwise). Naturally, each TTP reflects a detection-
query rule designed by an expert for reasoning over event
sequences. The experts also need to maintain and adapt
existing rules and develop new ones as attackers develop
new, more sophisticated attacks. Hence, relying on TTP-
based detectors is relatively expensive and time consuming.
We tested this approach for alert triage only when using
a certain dataset (DSOC; see §6.1.2), as TTP data were
otherwise unavailable. The dataset contains 85 different
TTPs, ranging from OS credential dump (MITRE T1003)
to process discovery (MITRE T1057). In other words, the
classifier inputs are 85-dimensional binary features.

Token Occurrence and Frequency To further char-
acterize the progress enabled by DrSec and contrast its
deep learning-based approach with classical ones, we com-
pared it against versatile baselines relying on term occur-
rence and frequency. Specifically, we considered models
using bag-of-words, term frequency, and term frequency-
inverse document frequency (TF*IDF) features, akin to
prior work (e.g., [73]). For fair comparison, we produced
these features using DrSec’s vocabulary (50K tokens).
Among these baselines, we found that TF*IDF with log
normalization–where tokens’ feature values are the product
between one plus their log-frequency and the logarithm
of their document-frequency’s inverse–consistently achieved
the best performance. Hence, in the interest of clarity, we
only report the TF*IDF results.

6.1.2. Datasets. We used four datasets in our evaluation.
DLarge For a dataset description, please refer to §2.
DSOC We received one alert-triage dataset from the

security-operation center (SOC) of the EDR vendor. The
DSOC dataset contains 757 processes triggering alarms that
were manually inspected by expert analysts and classified
as true and false alarms. The dataset is highly imbalanced
with a 1:10 ratio between true and false alarms. Samples in
the dataset represent a diverse set of real-world scenarios.
Examples of true alarms include a PowerShell process with
administrator privileges editing a sensitive part of the file
system, a running service continuously attempting to execute
malware, and a potentially unwanted program accessing the
file system. Examples of false alarms include a system-
cleaning utility performing an update and a Microsoft Word
process suspected of executing malware. We split the dataset
at random into training, validation, and test sets (481, 18,
and 258 samples, respectively).

DAtlasV2 We also evaluated alert-triage performance on
a dataset captured on two Windows 7 endpoints as they
are attacked by ten real-world attack scenarios described in
ATLAS [4]. The ten attack scenarios involve four single-host
attacks and six multi-host attacks which incorporate lateral

Rule name N:P Ratio Description

Email run 167 Email client invokes another app.
Key log. w/o UI 886 Program monitors user input.
Policy bypass 5,796 Process bypasses the device policy.
Net server 769 App. unexpectedly acts as a network server.
Non EXE run 269 App. invokes another with a non-exe extension.
Office run 451 Microsoft Office process invokes another app.
Sys. config. 1,570 App. attempts to modify a system config.
Util. run 3,767 Unexpected program invokes a system utility.
Virus-like 1,422 App. exhibits a suspicious behavior.
Web run 192 Browser invokes another app.

TABLE 3: Rules in DRules. For each rule, we include its
name, the number of negative (N) processes—i.e., ones that
have not triggered the rule—per positive (P) samples, and a
brief description.

movement by the attacker through a poisoned web page
on the first victim machine. These attacks exploit different
vulnerabilities in Adobe Flash Player and Microsoft Word
as their initial entry points.

This dataset is a reproduction of the original ATLAS
engagement, using the virtual machines and attack scripts
that were open-sourced by the authors, so that we could
deploy the Carbon Black EDR to collect uniform telemetry
data across all datasets. In addition to the attacks, DAtlasV2
contains diverse benign user data manually generated by two
authors using the machines as their primary workstations for
a four-day benign period. The attacks were then launched
on a final fifth day, during which the authors took turns
continuing to use the machines as workstations while the
other author briefly suspended normal use to trigger the
attacks. After data collection, ground truth labels for the
telemetry data were obtained based on the known attack
entities identified by the ATLAS authors (e.g., the names of
malicious files or websites used in the compromise).

DRules For the EDR-rule learning application, we ob-
tained an additional dataset containing 125,577 processes
and 7.31M events from 424 Windows endpoints spanning
two weeks (09/01/2022 – 09/14/2022). Unlike DSOC and
DAtlasV2, which only contain suspicious processes that have
triggered alerts, DRules includes all processes executed on the
devices, a few of which have triggered alerts (i.e., positive
samples) while the majority have not (i.e., negative samples).
In particular, DRules includes alerts fired by ten different rules
included in Carbon Black’s product, ranging from ones that
alert cyber analysts about key logging to ones that warn
about browsers that invoke other applications (indicating
potential drive-by-download attacks). Table 3 lists the rules
represented in the dataset and their descriptions, accompa-
nied with the number of negative samples for each positive
sample in DRules. Notice how DRules is substantially more
imbalanced than DSOC (up to 1:5,796 vs. 1:10 ratio between
positive and negative samples). We used a 60-20-20 split to
create training, validation, and test sets, respectively.

Our use of customer data in DLarge, DSOC, DRules is
consistent with the vendor’s data practices, and all customers
consent in advance to share data for improving products.
Moreover, administrators can opt out selected devices from
sharing data. To aid in reproducibility, we release the lab-



created DAtlasV2 and a model pre-trained on it (§6.3) [51].
However, for privacy consideration, no data released is
derived from proprietary customer data.

6.2. Security Application: Process Identification

When investigating a suspicious activity, analysts regu-
larly need to quickly determine the identity, reputation, and
functionality of a large variety of processes. Even for well-
known, high-reputation processes, an automatic update to a
program may cause it to emit previously-unseen behaviors
that the analyst must interpret as benign or potentially
suspicious. DrSec can aid in this task through performing
automated process identification. We treated process identi-
fication as an unsupervised learning problem and leveraged
the similarity between distributed representations of known
and unknown processes emitted by DrSec after pre-training
to identify the unknown processes.

In this experiment, we made use of the DLarge dataset.
We selected all process names with two or more unique
program hashes.1 We then set the processes with the most
prevalent hashes as known, and treated the processes with
the least prevalent hashes as unknown processes to be
identified. This resulted in 2,887 known processes and 94
unknown processes. To predict the process identity, our
application measured the Euclidean distance from the test
process’ representation to all known processes and selected
its nearest neighbor(s). We repeated this procedure with
both DrSecRoBERTa and DrSecDoc2Vec, and with TF*IDF
features, as a baseline. We measured success in terms of the
accuracy of unknown process identification.

We found DrSecRoBERTa was able to correctly identify
65.96% of unknown processes using a single prediction.
When inspecting the closest five processes to an unknown
process (i.e., top-5 accuracy), DrSecRoBERTa correctly iden-
tified 84.04% of unknown processes, thus substantially re-
ducing the uncertainty about the process’ identity from
2,887 possibilities to only five. Upon manual inspection
of the 34.04% of misidentified processes, we found that
roughly two thirds were mapped to highly related pro-
cesses. Among mismatched processes were different Mi-
crosoft Office programs (e.g., OneNote and Excel), different
remote-connection programs (e.g., AnyConnect and Global-
Protect), and different browsers (e.g., Explorer and Chrome).
DrSecDoc2Vec achieved lower accuracy than DrSecRoBERTa
at process-identification: 29.79% top-1 accuracy and 39.36%
top-5 accuracy. Still, these were higher than TF*IDF’s
27.22% top-1 accuracy and 31.95% top-5 accuracy. Notice
also that DrSec’s performance dramatically outperforms
the standard method of identifying processes via hash com-
parison, which would obtain 0% accuracy in this scenario.
DrSec’s success in the process identification provides evi-
dence that DrSec’s process representations satisfy a desir-
able property: they are able to summarize process’ behavior
such that different versions of the same process fall near
one another in the Euclidean space.

1. Hashes for the same program may differ due to software updates or
varied versions installed on different clients.
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Figure 6: Alert-triage PR curves. The AUCs are reported
in the legend.
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Figure 7: Analyst time wasted investigating false alarms.
Following prior work [26], this analysis assumes a uniform
average investigation time of 20 minutes per alert.

6.3. Security Application: Alert Triage

Alert triage is an essential security application due to
the large number of alerts generated by enterprise secu-
rity products [1], [10], [56]; in practice, failure to effec-
tively triage the most critical alerts may mean that an ac-
tual intrusion goes uninvestigated. We evaluated a DrSec-
based alert triage application against two datasets, DSOC
and DAtlasV2. Starting with the pre-trained models, we fine-
tuned and evaluated DrSecRoBERTa and DrSecDoc2Vec on
alert triage using DSOC and DAtlasV2. For DrSecRoBERTa,
we ran six epochs of fine-tuning and selected the model
with the highest validation accuracy. For DrSecDoc2Vec,
we experimented with different models (e.g., random forest,
support vector machines, and logistic regression), all using
the Doc2Vec distributed representations as inputs, and
picked random forests, which achieved the highest validation
accuracy. Following the same process, we evaluated different
classifiers using DeepCase’s representations as well as
TTP and TF*IDF features, finding that random forests
had the best validation accuracy in both cases. Due to the
imbalanced nature of the datasets, we evaluated performance
using precision-recall (PR) curves, per recommended prac-
tice [6]. Precision measures the fraction of true alarms out of
those classified as true, while recall measures the fraction of
true alarms correctly classified out of all true alarms. Higher
area under curve (AUC) indicates better performance.

Fig. 6 reports of the performance of each system for the
DSOC and DAtlasV2 datasets. DrSecRoBERTa achieves 10.8%–
16.94% higher AUC than the best baselines. Both DrSec
variants outperformed DeepCase on both datasets (1.09%–
23.43% higher AUC). This result provides evidence that that



DrSec may outperform DeepCase when analyzing fine-
grained event telemetry; DeepCase was designed to triage
much higher-level, coarser-grained events (e.g., “CVE-2018-
7600 Exploit”), which is reflected in the design of their
architecture that is meant for smaller vocabulary sizes and
sequence lengths. We report on the TTP-based system for
the DSOC dataset in Fig. 6a.2 The TTP-based approach
outperformed DrSec when using the (relatively) simpler
Doc2Vec LM (6.23% higher AUC), but was outperformed
by the more advanced DrSecRoBERTa on most operating
points, achieving 10.80% lower AUC. Lastly, the TF*IDF
model achieved surprisingly good performance, with perfect
precision for recall values ≤40.00% on DSOC, but was
substantially outperformed by DrSecDoc2Vec on DAtlasV2
(14.68% lower AUC) and by DrSecRoBERTa on both datasets
(14.30%–16.94% lower AUC).

To interpret these results in a more practical context,
we considered the cost (in wasted time) of investigating
false alarms based on each triage system. Following prior
work, we assumed that analysts require a uniform average
time of ∼20 to investigate a single alert [26]. For a given
percentage threshold of true alerts (i.e., recall), time wasted
can then be calculated as 20 minutes times the number of
false alarms ranked higher than the lowest ranked true alarm
required to reach the threshold. The results are given in
Fig. 7. As expected from the PR curves, for almost all
operating points, DrSecRoBERTa could enable analysts to
find most true alarms while wasting the least time analyzing
false alarms. For instance, on the DSOC dataset, analysts
using DrSecRoBERTa could inspect 80% of true alarms while
wasting ≥2.64× less time (125 vs. ≥330 minutes) than other
approaches. For the DAtlasV2 dataset, DrSecRoBERTa exceeds
80% recall before wasting any analyst time.

Effect of Limited Labeled Data While the amount of
labeled data in DSOC and DAtlasV2 is fairly limited compared
to the sheer amount of unlabeled data collected via EDR, we
wanted to test whether DrSec performs well when labeled
data is even more scarce. To this end, we randomly selected
50% of DSOC’s training set for training, and evaluated the
system performance on the full test set. In this experiment,
we compared the best-performing variant of DrSec, based
on the RoBERTa model, and the best-performing baseline,
TTP. Fig. 8 in App. A shows the results. Compared to
training on the entire training set, the performance of both
systems dropped. Still, DrSecRoBERTa had higher AUC
(55.88% vs. 47.32%), attaining better or comparable PR
tradeoffs that TTP for most operating points.

Effect of Limited Pre-training Data To assess how the
amount of pre-training affects DrSec’s performance, we
pre-trained a DrSecRoBERTa variant on parts of DAtlasV2 and
tested it on the remainder of DAtlasV2 and DSOC. Specif-
ically, we used DAtlasV2’s single-host attack scenarios for
training and the multi-host scenarios for testing. Overall,
the pre-training data of DAtlasV2 contained 207,470 samples;
438× fewer samples than DLarge. Accordingly, as expected,

2. We were unable to run the TTP model against the DAtlasV2 dataset as
TTP data was not available.

Rule name DrSecRoBERTa DrSecDoc2Vec TF*IDF

Email run 64.87% 62.45% 51.85%
Key log. w/o UI 86.71% 72.00% 61.94%
Policy bypass 91.67% 90.82% 77.64%
Net server 92.57% 88.89% 79.63%
Non EXE run 81.10% 75.53% 72.48%
Office run 30.99% 18.11% 15.04%
Sys. config. 71.48% 64.08% 14.88%
Util. run 100.00% 100.00% 100.00%
Virus-like 92.12% 80.59% 19.19%
Web run 75.28% 66.29% 61.98%

TABLE 4: PR AUCs for rule learning on DRules. We report
results for DrSecRoBERTa, DrSecDoc2Vec, and TF*IDF.

DrSecRoBERTa’s alert-triage performance when pre-training
on DAtlasV2 was lower than when pre-training on DLarge—
52.38% vs. 75.11% PR AUC on DSOC and 71.98% vs.
94.74% AUC on DAtlasV2’s multi-host scenarios. Nonethe-
less, the DrSecRoBERTa model trained on DAtlasV2 gained
competitive performance with DeepCase pre-trained on
significantly more data from DLarge–52.38% vs. 56.99% PR
AUC on DSOC and 71.98% vs. 72.31% AUC on DAtlasV2’s
multi-host scenarios. Since we trained it on non-sensitive
data, we release the DrSecRoBERTa model pre-trained on
DAtlasV2 alongside the dataset to aid in reproducibility [51].

6.4. Security Application: EDR Rule Learning

To our knowledge, DrSec’s deployment in EDRs is
the first to leverage a hybrid model of rule- and learning-
based detection, creating an opportunity for new security
application paradigms. As an initial exploration in this direc-
tion, we set out to determine whether DrSec could create
more generalized representations of expert rules that were
more robust to subtle changes in attacker behavior. This
approach, if possible, would offer the additional advantage
of reducing the manual burden required by experts to tune
rules to account for different exceptions and corner cases;
instead, it would be possible to simply adjust the threshold
on model outputs.

In this experiment, we fine-tuned the pre-trained models
on process data that was labeled with EDR alerts, then
asked them to predict whether new processes trigger an
alert. Processes were organized by alert, with both the
training and test splits featuring instances of each alert. We
tuned the DrSecRoBERTa model for two epochs, evaluating
validation accuracy after every 500 model updates, then
selected the model with the highest validation accuracy.
For DrSecDoc2Vec, we used random-forest classifiers with
the hyperparameters that did best on alert triage. The clas-
sifiers took the Doc2Vec representations as inputs, and
predicted whether rules were fired or not for each process.
We also tested TF*IDF features for rule learning, again
using random-forest classifiers and the best-performing hy-
perparameters from the alert-triage experiments.

For each rule, we computed the PR AUCs obtained
by the three systems. Table 4 summarizes the results. De-
spite facing a challenging imbalanced learning problem,



DrSecRoBERTa and DrSecDoc2Vec both performed well on
rule learning, achieving 78.68% and 71.88% average AUCs
across rules, respectively.3 As expected, DrSecRoBERTa
learned rules more accurately than DrSecDoc2Vec, attaining
higher or equal AUC for all ten rules. Additionally, both
DrSec variants were more accurate than TF*IDF (55.46%
average AUC), consistently achieving higher or equal AUC.
To our knowledge, this is the first experimental result
demonstrating that EDR detection rules can be effectively
represented within an ML model.

While the accuracy results are already impressive, it
may be that the false positives include suspicious processes
that should have triggered an alert but did not due to the
brittle nature of rule-based detection. To characterize the
false positive results, we inspected the top five false positives
DrSecRoBERTa for the system configuration and web run
rules. For the system configuration rule, three of the five
FP’s were incurred by an unknown, unsigned process named
ids.exe. This process attempts to inject code into other
processes via Windows’ SetWindowsHookEx API). One
false positive was caused by an unsigned program called
tcpmain.exe that attempted to inject code into other
processes and monitor keystrokes. The last false positive
was issued for a PDF reader process that enabled executable
memory, hooked other processes, passed commands to the
service-control manager, and listened to keystrokes. For the
web run rule four of five false positives were Internet Ex-
plorer attempting to enable executable memory, listed avail-
able processes, and invoked Excel or Acrobat Reader. While
we are unable to retroactively determine whether these
behaviors were attacks, 9 of the 10 surveyed false positives
featured processes that were clearly engaging in suspicious
behaviors that were consistent with the goal of the detection
rule. Only the last web run false positive appeared to be a
true “mistake” by DrSecRoBERTa, as it was triggered by
a Windows’ file explorer process (i.e., explorer.exe)
that had been running for six consecutive days and creating
processes per user commands. While more verification is
needed, these results provide intriguing anecdotal evidence
that hybrid rule/learning detection systems may be able to
detect suspicious unanticipated attack behaviors.

6.5. Security Analysis

By introducing ML tasks to EDRs, which historically
are driven by rule-based detection, the potential for ML
attacks must be considered. In testing, an adversary may
attempt to force an incorrect classification by altering the
behavior of malicious processes to resemble those of benign
processes (i.e., mimicry). In training, an adversary may
attempt to subtly and incrementally shift the distribution of
normal behaviors (i.e., data poisoning) in order to force an
incorrect classification in a security application. Here we
assess DrSec’s susceptibility to various attacks.

Evading Detection at Deployment As with other ML-
based systems, DrSec may be misled by adversaries during

3. Corresponding to 98.06% and 97.42% receiver-operating characteris-
tic AUC, on average, for DrSecRoBERTa and DrSecDoc2Vec, respectively.

deployment. To evaluate robustness, we launched evasion
attacks against DrSec and other systems. In particular,
building off Yang et al.’s work [72], we implemented an at-
tack that induces misclassification. Given an event sequence,
the attack iteratively modifies it to evade the model, per-
forming two actions per iteration: (1) identifying the index
of the event most associated with the ground truth (e.g., true
or false alarms) via a model-interpretation technique [58];
and (2) mimicking the other class by introducing an event
closely associated with the erroneous class (mined from
the training set). To preserve functionality, the adversary
cannot remove or modify existing events. We ran the attack
for 100 iterations and measured the evasion success rate
and the percentage of events added for successful evasion
(i.e., attack budget). Lower success rates and higher attack
budgets indicate a more robust model.

We measured robustness on the alert-triage task us-
ing DSOC, after tuning DrSecRoBERTa, DeepCase, and
the TF*IDF model for 86.67% recall (corresponding to
a 0.5 threshold on DrSecRoBERTa). While we found that
all models were vulnerable to evasion, DrSecRoBERTa was
the most robust. Attacks against DrSecRoBERTa achieved
a 98.84% success rate with a median attack budget of
16.67%. In contrast, attacks against DeepCase and the
TF*IDF model attained 99.61% and 99.22% success rate,
with median attack budgets of 10.00% and 5.26%, re-
spectively. Crucially, DrSecRoBERTa was markedly more
robust than the baselines for true alarms, with an attack
success-rate of 80.00% (compared to 92.82% and 86.67%
against DeepCase and TF*IDF, respectively) and a me-
dian budget of 83.73% (compared to 8.70% and 9.62% for
DeepCase and TF*IDF, respectively), rendering it more
challenging to evade while hiding actual attacks. We discuss
measures to further enhance DrSec’s robustness in §7

Poisoning the Pre-trained Model Adversaries may seek
to poison the pre-trained, foundation DrSec models–e.g.,
by introducing triggers leading to predictable representa-
tions [52]–to harm their performance. We expect such poi-
soning to be difficult in our envisioned deployment scenario
due to the sheer scale of pre-training data. A single device
submitting telemetry contributes <1.5 processes on average
to DLarge; thus, an adversary must control >60K devices to
poison even 0.1% of the data (containing ∼91M processes).
Still, prior work has shown that LMs may memorize individ-
ual training records (or parts thereof) [12], [59], thus poten-
tially enabling adversaries to manipulate models with little
control over training data. To counter such risk, one may
leverage techniques developed to ensure sensor integrity,
rendering it challenging for adversaries to submit arbitrary
data [47]. Furthermore, large companies pre-training foun-
dation models like DrSec can use trusted data (e.g., from
employees) to ensure data integrity. As pre-training does not
happen on live data, one may also sanitize data to further
uphold data integrity. Finally, at the scale of our dataset, one
can use theoretically-backed defenses with negligible utility
loss (e.g., differentially private training [61]).

Poisoning Downstream Tasks While poisoning the
foundation model is challenging, adversaries may still be



able to poison downstream tasks. As labeled data used in
the supervised tasks (e.g., alert triage) is quality controlled,
unsupervised tasks such as process identification may be
more susceptible to poisoning. We tested poisoning attacks
against process identification, simulating an adversary that
takes over a (popular) target process so that its reported
telemetry becomes similar to a source process they aim to
misclassify at test time. To form poisonous samples, we
concatenated event sequences from the source and target
processes, sampling a fraction α from the source and 1-α
from the target. We sampled the event sequences by select-
ing the initial event and length at random while ensuring
the poisonous sample’s overall length is comparable to the
source’s training samples’ lengths (within ×0.5 and ×2 of
the average length). We repeated the process-identification
experiment from §6.2 with DrSecRoBERTa, increasing the
number of poisonous samples by one at a time; we stopped
when attacks succeeded or half of the training samples were
poisonous. We used the most popular process as the target
and selected source processes with varying popularity–two
from each of the top 10% and 50% (high and medium
popularity), and two from the bottom 10% (unpopular). The
distances of the source processes’ representations from the
target’s were roughly equal, with a 31.23 average Euclidean
distance, whereas ≤15.85 distance was needed for iden-
tification in the benign setting (i.e., without attacks). We
estimated attack success by whether the source processes
were (mis)identified as the target, and stealth by the increase
in the number of target process’ training samples.

For relatively small α values, poisonous sequences fail to
achieve substantial attack success. For α=0.10, only one of
the six source processes were misclassified as the target. In-
creasing alpha improves attack success: four of six processes
were misidentified as the target for α ∈ {0.5, 0.9}. The
attacks were least successful for popular source processes,
failing for all α values. The attacks succeeded for the
processes with the medium and low popularity, but were less
stealthy as popularity increased–more poisonous samples
were necessary for attack success for medium-popularity
sources (9.18% increase in the target process’ samples)
compared to the least popular processes (4.08% increase).
We discuss means to mitigate such attacks in §7.

7. Discussion

Addressing Endpoint Security Challenges (§2.2)
Through the introduction of DrSec, we address the high-
dimensionality of event attributes by instead summarizing
process behavior in a single representation. While this does
not directly aid human analysts, it does enable better tooling
by providing a common core for downstream security tasks
to address the fractured ecosystem of security applications.
Common problems that analysts face, such as alert fatigue
(i.e., too many false positives) or missed detections (i.e.,
too many false negatives), can be address in-part by useful
automation. As part of our evaluation of DrSec, we demon-
strate that its distributed representations can be leveraged
for downstream alert triage that can reduce the amount of

time wasted by analysts (i.e., reducing the number of false
alerts). Finally, for many security applications, there is a
limited labeled data; given the DrSec foundation model,
we demonstrate that downstream tasks can be trained to
provide high-accuracy with a limited fraction of labeled data
(as compared to a standalone model).

LMs for Interpreting Low-level Telemetry LMs have
a demonstrated ability in NLP to capture semantics in a
self-supervised manner (e.g., [65]). We leverage this abil-
ity to aid in the interpretation of sequences of low-level
process events–constituting a language themselves (§5.1)—
given the natural semantic gap between these events and
downstream task properties (e.g., true or false alarms). In
applying DrSec to process identification (§6.2), we di-
rectly use these representations to cluster processes in an
unsupervised manner: DrSecRoBERTa identifies roughly two-
thirds of unknown processes with a single prediction, and
most mispredictions map to highly-related processes. From
this behavior, we conclude that LMs can help bridge the
challenging semantic gap. That said, a limitation of DrSec
is its inability to adequately model multi-threaded and inter-
host events. For example, sequences of events in multi-
threaded processes are interleaved with events from other
threads within the process. Thus, two neighboring events
within a thread can be separated by many events within the
process sequence. While it does not explicitly account for
this separation, we believe that our transformer-based model
handles it more gracefully than our Doc2Vec-based model
due to architectural differences: the Doc2Vec-based model
uses a fixed window size for tokens (five in our evaluation).
In future work, given appropriate event annotations, we
would like to explore: (1) how to best represent event
sequences while accounting for behavior caused by multiple
threads interacting; and (2) the resulting improvements to
the accuracy of downstream applications.

Hardening Against Attacks The LMs employed by
DrSec provide no intrinsic protections against evasion and
poisoning. These threats can be mitigated by drawing on
adversarial ML techniques. As we envision DrSec as a
tool employed by EDR vendors or large enterprises, the
sheer scale of telemetry data provides natural resistance to
poisoning attacks targeting the foundation LMs. Addition-
ally, DrSec’s learning-based mechanisms could comple-
ment, rather than replace, rule-based EDR detection: since
these rules should not be misled by distracting process
activities, one can ensure that attacks are not missed due
to the introduction of DrSec. Our experiments show that
DrSec is more robust than other methods, potentially due to
more faithfully deriving meaning from low-level events and
reasoning over longer event sequences. However, as with
other approaches, DrSec can still be misled by sufficiently
powerful adversaries. To further harden DrSec, we can
employ techniques such as adversarial training [35] and
randomized smoothing [27]. Moreover, similarly to other
ML applications, certain downstream applications built on
top of DrSec may be susceptible to poisoning. If the task’s
training data originates from potentially untrusted sources,
one should seek to ensure the application’s integrity. Poi-



soning defenses, and chiefly ones that sanitize data before
training [13], [62] to remove anomalous sequences produced
with large α, could aid in doing so.

Accounting for Concept Drift For DrSec, it is im-
portant to handle concept drift; in particular with respect
to changes in the input data distribution (i.e., process event
sequences). First, this may require changes to the vocabulary
due to how the language tokens are selected to support
a concise, yet descriptive, vocabulary. For instance, one
of the elements of the DrSec vocabulary encodes the
TLDs for domains that the process connects to; when new,
popular TLDs are introduced, the vocabulary may need
to change accordingly. Additionally, endpoint sensors are
continually evolving to capture more contextual information
about process behavior (and thus improve threat analytics),
which would need to be considered in the vocabulary.
Given changes in the vocabulary over time, as well as the
behavior of applications themselves, it is important to update
the DrSec model. For large, foundation models such as
DrSec, training can be time and resource intensive; training
the DrSecRoBERTa model in our evaluation took seven days
using one Nvidia V100 GPU for a single epoch, but this
would grow with a more comprehensive dataset and larger
number of epochs. As part of future work, it would be
useful to explore how to support training from existing
models while handling large changes in the vocabulary (e.g.,
software updates, new software products).

8. Related Work

ML in Security ML-based methods are widely deployed
in various security tasks, such as malware detection [20],
network-intrusion detection [2], alert triage [5] and vul-
nerability discovery [23]. Training supervised models for
computer security is challenging due to the difficulty in cu-
rating large amounts of accurately labeled data. At the same
time, unsupervised ML often lacks the sufficient accuracy
needed for developing fully autonomous security systems.
Researchers sometimes manually define features that the ML
model would ingest (e.g., [74]). However, feature engineer-
ing is often expensive and limits the reusability of models
across different tasks. DrSec addresses these problems
through (1) limiting the amount of labeled data needed for
training; (2) mitigating manual feature engineering by auto-
matically learning distributed representations (i.e., features);
and (3) creating foundation models that can be reused across
different tasks.

LMs in Security LMs have been proposed for nat-
ural languages (e.g., [37], [65]), programming languages
(e.g., [3], [18], [46]), and protein sequences (e.g., [30]) for
years. They have enabled revolutionary technologies such
as GPT-3 [11]—an LM that can produce naturalistic text
for different tasks—and Copilot [22]—a tool used to im-
prove programmers’ productivity. Particularly appealing is
certain pre-trained LMs’ property as few-shot learners [11],
i.e., their ability to accurately address downstream tasks
with limited supervision. We leveraged this property in
DrSec to address multiple security tasks with little to no

supervision. In computer security, LMs have been used to
predict attacks [53], understand attack evolution [54], detect
malware [71], triage alerts [64], and more. Unlike DrSec,
which can repurpose the LMs for multiple tasks, prior efforts
used the LMs to address specific tasks.

Threat Detection and Alert Triage EDR’s are the
prevailing threat detection solution in industry, using a rule-
based approach to generate security alerts by matching
local process-level events against known malicious event
sequences. Due to the limitations of local context, though,
handcrafted rules are often error prone, leading to many
false positives. To this end, some provenance-based systems
construct causal graphs from process-level event sequences
in order to triage alerts [25], [26], [38]. Other systems
assist security analysts by correlating alerts via statistical
or heuristic approaches [16], [24], [42], [63], [69]. SIEM
tools in industry [8], [49] are based on event correlation.
Data mining [7] has also automated alert triage based on
past analysts’ operation traces [75]. However, these methods
require laborious accurate labeling of attack events.

In another thread of alert-triaging work, ML is often
employed to distinguish true from false alarms [4], [28],
[33], [43], [60], [64]. While some alert-triage systems rely
on custom, manually developed features, like installed soft-
ware indicators [43], other systems require fully labeled
datasets [60], such as CIC-IDS2017 [50]. By contrast,
DrSec automatically learns representations, and requires
limited supervision or none at all. DeepCase [64] is likely
the most related system to DrSec. Similarly to DrSec,
DeepCase relies on an LM, with or without supervi-
sion, for alert triage. Yet, unlike DrSec, DeepCase’s
LM is not reusable across tasks. Moreover, we found that
DeepCase is heavily reliant on high-level, easily inter-
pretable events. Consequently, when trained on low-level
process events, DeepCase’s alert-triage performance was
significantly lower than DrSec’s.

9. Conclusion
This work proposed DrSec, a system that makes use

of distributed representations learned by foundation LMs
and makes significant progress toward unifying the fractured
ecosystem of security applications. Using little to no labels,
we showed that DrSec can tackle three applications—
process identification, alert triage, and EDR-rule learning—
with substantial success. In doing so, we demonstrated
that DrSec’s distributed representations can meaningfully
summarize process behavior and help ameliorate central
challenges faced by endpoint security products (e.g., the
alert fatigue and missed detections). In the future, it would
be interesting to investigate other applications domains that
DrSec can help tackle (e.g., malware or anomaly detec-
tion [55], [74]), and extend it to address various real-world
challenges, such as concept drift.
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Appendix A.
Alert Triage With Limited Labeled Data

Fig. 8 presents the PR curve for alert triage on DSOC
when using only 50% of the training data for fine-tuning.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

DrSecRoBERTa (AUC: 55.88%)
TTP (AUC: 47.32%)

Figure 8: Alert-triage PR curves on DSOC, when training
on 50% of the training split. The AUCs are reported in
the legend.
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Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper introduces DrSec, a system that provides
an intermediate representation of endpoint telemetry data
for use in a variety of security applications. The central
goal of DrSec is to ease the development of downstream
security applications by introducing a unified intermediate
layer based on a pre-trained language model, which can then
be fine-tuned for specific tasks. The evaluation demonstrates
that, compared to various baselines, DrSec provides better
performance and remains robust against various evasion and
poisoning attacks.

B.2. Scientific Contributions

• Addresses a Long-Known Issue.
• Provides a Valuable Step Forward in an Established Field.

B.3. Reasons for Acceptance

1) The paper addresses the longstanding problem of ef-
ficient event ingestion and processing for endpoint
security systems. It shows that having a unified inter-
mediate layer provides several advantages over current
approaches and still has desirable security guarantees.

2) The paper introduces a radically different approach to
endpoint security solutions. It shows that pre-trained
foundation language models are a useful device for effi-
ciently dealing with alert fatigue and missed detections
as it relates to EDR.
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