
Practical Inference-Time Attacks
Against Machine-Learning Systems

and a Defense Against Them

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Department of Electrical and Computer Engineering

Mahmood Sharif

B.Sc., Computer Science, University of Haifa
M.Sc., Computer Science, University of Haifa

Carnegie Mellon University
Pittsburgh, PA

December, 2019

c© Mahmood Sharif, 2019
All Rights Reserved

Keywords: Adversarial Examples, Machine Learning, Security, Attacks,
Defenses.

For my family and friends.

Committee Members

Lujo Bauer (Co-chair), Carnegie Mellon University

Nicolas Christin (Co-chair), Carnegie Mellon University

Matt Fredrikson, Carnegie Mellon University

Michael K. Reiter, University of North Carolina at Chapel Hill

i

Acknowledgements

This thesis would not have been possible without many outstanding people—I would
like to express my sincere gratitude to them.

Special thanks goes to my advisors, Lujo Bauer and Nicolas Christin—working
with them has made me the researcher I am today. Among many things, under their
guidance I learned how to approach research problems systematically and how to turn
rough ideas to top tier papers (and even where to put hyphens between words in these
papers). If I ever mentor students in the future, I hope I will do so while being as
competent, gentle, and supportive as they are.

My gratitude also goes to Matt Fredrikson and Mike Reiter, the other committee
members. While I have not had the pleasure to collaborate closely with Matt on a
research project, I deeply appreciate his feedback and questions that always triggered
deep thoughts. With Mike, I had the privilege to collaborate on several projects,
including all the ones that are presented in this thesis. I am thankful for the optimism
he showed when research problems turned more difficult than we had initially thought,
for his listening skills and useful feedback, and for his eye-catching title proposals.

Over the last five years, I had the fortune to acquire many additional collabora-
tors, including: Akihiro Nakarai, Akira Yamada, Anupam Das, Ayumu Kubota, Billy
Melicher, Chris Gates, Daniel Kats, Janos Szurdi, Josh Tan, Jumpei Urakawa, Keane
Lucas, Kevin Roundy, Limin Jia, Matteo Dell’Amico, Matthias Beckerle, Michelle
Mazurek, Mihai Christodorescu, Pedro Leon, Saurabh Shintre, Sruti Bhagavatula,
Yukiko Sawaya, and Zack Weinberg. I am grateful for their help and for the op-
portunity to learn from them.

My family has been supportive of me throughout the entirety of the PhD journey.
My parents gave me the tools and instilled me with the courage to pursue my dreams,
my grandparents pushed me to learn and be curious since I can remember myself,
my siblings were always helpful (if only by putting a smile on my face), and Bassma
Khamaisi, my fiancé, penetrated my life in the middle of the journey and immediately
made it more enjoyable in every possible way. I thank them for their support and for
making my life more meaningful.

Moving to Pittsburgh to do a PhD gave me the opportunity to develop deep friend-
ships that will remain with me for life. In particular, Aaron Harlap, Alessandro Gior-
dano, Aymeric Fromherz, Janos Szurdi, Josh Tan, Manar Saria, Mohammad Alawiah,
Orsi Kovács, Pardis Emami-Naeini, Simon Weiss, and Sruti Bhagavatula were always
there for me when I needed them. I thank them for being my second family away from
home.

ii

iii

Last, I thank the remaining CyLab faculty for the advice they gave me throughout
the years, the CyLab staff for always being ready to help, my fellow CyLab students
for being friendly and kind, and my squash and soccer friends for tolerating my limited
skills.

The work presented in this thesis was supported in part by the Multidisciplinary
University Research Initiative (MURI) Cyber Deception grant; by NSF grant 1801391
and 1801494; by the National Security Agency under Award No. H9823018D0008; by
gifts from Google and Nvidia, and from Lockheed Martin and NATO through Carnegie
Mellon CyLab; and by a CyLab Presidential Fellowship and a NortonLifeLock Research
Group Fellowship.

Abstract

Prior work has shown that machine-learning algorithms are vulnerable to evasion by so-
called adversarial examples. Nonetheless, the majority of the work on evasion attacks
has mainly explored Lp-bounded perturbations that lead to misclassification. From a
computer-security perspective, such attacks have limited practical implications. To fill
the gap, we propose evasion attacks that satisfymultiple objectives, and show that these
attacks pose a practical threat to computer systems. In particular, we demonstrate how
to produce adversarial examples against state-of-the-art face-recognition and malware-
detection systems that simultaneously satisfy multiple objectives (e.g., smoothness and
robustness against changes in imaging conditions) to mislead the systems in practical
settings. Against face recognition, we develop a systematic method to automatically
generate attacks, which are realized through printing a pair of eyeglass frames. When
worn by attackers, the eyeglasses allow them mislead face-recognition algorithms to
evade recognition or impersonate other individuals. Against malware detection, we
develop an attack that guides binary-diversification tools via optimization to transform
binaries in a functionality preserving manner and mislead detection.

The attacks that we initially demonstrate achieve the desired objectives via ad hoc
optimizations. We extend these attacks via a general framework to train a generator
neural network to emit adversarial examples satisfying desired objectives. We demon-
strate the ability of the proposed framework to accommodate a wide range of objectives,
including imprecise ones difficult to model, in two application domains. Specifically,
we demonstrate how to produce adversarial eyeglass frames to mislead face recognition
with better robustness, inconspicuousness, and scalability than previous approaches,
as well as a new attack to fool a handwritten-digit classifier.

Finally, to protect computer-systems from adversarial examples, we propose n-
ML—a novel defense that is inspired by n-version programming. n-ML trains an en-
semble of n classifiers, and classifies inputs by a vote. Unlike prior approaches, however,
the classifiers are trained to classify adversarial examples differently than each other,
rendering it very difficult for an adversarial example to obtain enough votes to be mis-
classified. In several application domains (including face and street-sign recognition),
we show that n-ML roughly retains the benign classification accuracies of state-of-the-
art models, while simultaneously defending against adversarial examples (produced
by our framework, or Lp-based attacks) with better resilience than the best defenses
known to date and, in most cases, with lower inference-time overhead.

iv

Contents

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Outline . 3

2 Background and Related Work 5
2.1 Attacks Minimizing Lp-norms . 5
2.2 Attacks with Other Objectives . 6
2.3 Defending ML Algorithms . 8
2.4 Threat Models . 11

3 Physical-World Attacks Against Face Recognition 12
3.1 Introduction . 12
3.2 Technical Approach . 14
3.3 Evaluation . 19
3.4 Extension to Black-box Models . 26
3.5 Extension to Face Detection . 29
3.6 Discussion . 31
3.7 Conclusion . 32

4 Functionality-Preserving Attacks Against Malware Detection 33
4.1 Introduction . 33
4.2 Technical Approach . 34
4.3 Evaluation . 42
4.4 Discussion . 50
4.5 Conclusion . 55

5 A General Framework for Attacks with Objectives 57
5.1 Introduction . 57
5.2 A Novel Attack Against DNNs . 58
5.3 AGNs that Fool Face Recognition . 61
5.4 Evaluation . 67
5.5 Discussion and Conclusion . 82

v

vi

6 Mitigating Adversarial Examples via Ensembles of Topologically Ma-
nipulated Classifiers 84
6.1 Introduction . 84
6.2 Technical Approach . 85
6.3 Evaluation Against Lp Attacks . 88
6.4 Evaluation Against AGNs . 100
6.5 Discussion . 102
6.6 Conclusion . 104

7 Summary and Future Work 105
7.1 Summary . 105
7.2 Future Work . 106

Bibliography 108

List of Tables

3.1 A summary of the digital-environment experiments attacking VGG2622,
VGG10, and VGG143 under the white-box scenario. In each attack
we used three images of the subject that we sought to misclassify; the
reported success rate is the mean success rate across those images. . . . 20

3.2 A summary of the physical realizability experiments. To the left, we re-
port the DNN attacked and the identity of the subjects (the attackers in
the simulation). When not attempting to fool both DNNs, the subjects
were originally classified correctly with mean probability >0.85. SR is
the success rate. HC is the success rate when the attacker’s image is mis-
classified as the target with high confidence (i.e., above a threshold set
to balance the security and the usability of the face-recognition system).
E(p(c)) is the mean (expected) probability of the class when classifying
all images (cx is the correct class, ct is the target class). Results for SC

when attacking VGG10 were achieved with glasses that occupy 10% of
the area of the image being classified; results for the other experiments
were achieved with glasses that occupy 6% of the image. 23

3.3 Results of four attempted impersonation attacks, each run three times.
SA–SC are the same subjects from Sec. 3.3.2. SD is a 33-year-old Asian
female. Each attempt had a different (randomized) initial seed and
velocities. Number of queries is the total number of queries made of the
oracle in the PSO iterations. 29

4.1 The number of benign and malicious binaries used to train, validate,
and test the DNNs. 43

4.2 The DNNs’ performance. We report the accuracies on the different data
partitions, as well as the TPR at the operating point where the FPR
equals 0.1%. 44

4.3 The number of benign and malicious binaries used to test our attacks
against the three DNNs. 45

4.4 The median number of VirusTotal anti-viruses that positively detected
(i.e., as malicious) malicious (a) and benign (b) binaries that were trans-
formed by our white-box attacks (columns) to mislead the different
DNNs (rows). The median number of anti-viruses that positively de-
tected for the original malicious and benign binaries is 55 and 0, re-
spectively. Cases in which the change in the number of detections is
statistically significant are in bold. 49

vii

viii

5.1 Performance of the face-recognition DNNs. We report the accuracy,
the success rate (SR) of naïve dodging and impersonation (likelihood
of naïve attackers to be misclassified arbitrarily or as a priori chosen
targets), the threshold to balance correct and false classifications, the
true-positive rate (TPR; how often the correct class is assigned a proba-
bility above the threshold), and the false-positive rate (FPR; how often
a wrong class is assigned a probability above the threshold). 66

5.2 For each experimental section, we mark the combinations of domains
(digital or physical) in which the attack was tested, the attack types
(untargeted or targeted) tested, and the objectives of the attack, cho-
sen from inconspicuousness, robustness (against training-data augmen-
tation, detection, printing noise, pose changes, and luminance changes),
universality, and transferability. Note that while we did not explicitly
design the attacks to transfer between architectures, we found that they
transfer relatively well; see Sec. 5.4.4. 68

5.3 Results of attacks in the digital environment. We report the the mean
success rate of attacks and the standard error when fooling the facial-
recognition DNNs. 70

5.4 The mean success rates and standard errors of dodging and imperson-
ation using AGNs when simultaneously fooling facial-recognition DNNs
and a detector. 71

5.5 Summary of physical realizability experiments. For dodging (top), we re-
port the success rate of AGNs (percentage of misclassified video frames),
the mean probability assigned to the correct class (lower is better), the
success rate of the CCS16 attack (Chap. 3), and the success rate of
AGNs under luminance levels higher than the baseline luminance level
(AGNs-L). For impersonation (bottom), we report the target (SE is a
member of our group, an Asian female in the early 20s), the number
of targets attempted until succeeding, the success rate of AGNs (per-
centage of video frames classified as the target), the fraction of frames
classified as the target with high confidence (HC; above the threshold
which strikes a good balance between the true and the false positive
rate), the mean probability assigned to the target (higher is better), the
success rate of the CCS16 attack, and the success rate under varied lu-
minance levels excluding the baseline level (AGNs-L). Non-adversarial
images of the attackers were assigned to the correct class. 74

5.6 Parameter estimates for the logistic regression model. Statistically sig-
nificant factors are in boldface. 76

5.7 Transferability of dodging in the digital domain. Each table shows how
likely it is for a generator used for dodging against one network (rows)
to succeed against another network (columns). 77

5.8 Transferability of dodging in the physical domain. We classified the
frames from the physically realized attacks using DNNs different from
the ones for which the attacks were crafted. Each table shows how likely
it is for frames that successfully dodged against one network (rows) to
succeed against another network (columns). 79

ix

5.9 Relative realism of selected sets of eyeglasses. For each two sets com-
pared, we report in parentheses the fraction of eyeglasses per set that
were marked as real by study participants, the odds ratios between the
groups, and the p-value of the χ2 test of independence. E.g., odds ratio
of 1.71 means that eyeglasses are ×1.71 as likely to be selected as real
if they are in the first set than if they are in the second. 80

6.1 The DNN architectures that we used for the different datasets. The
DNNs’ accuracies on the test sets of the corresponding datasets (after
standard training) are reported to the right. 90

6.2 The performance of topologically manipulated DNNs compared to stan-
dard DNNs. For standard DNNs (top), we report the average and stan-
dard deviation of the (benign) accuracy and the targeting success rate
(TSR). TSR is the rate at which the DNN emited the target class on
a transferred adversarial example. For topologically manipulated DNNs
(bottom), we report the average and standard deviation of the accuracy,
the TSR, and the manipulation success rate (MSR). MSR is the rate at
which adversarial examples were classified as specified by the derange-
ments drawn at training time. TSR and MSR are reported for adver-
sarial examples produced against the same DNNs used during training
or ones produced against held-out (h/o) DNNs. 92

6.3 Defenses’ overhead at inference time. The second column reports the
average inference time in milliseconds for batches containing 32 samples
for a single (standard or adversarially trained) DNN. The columns to
its right report the overhead of defenses with respect to using a single
DNN for inference. 100

List of Figures

1.1 An illustration of an adversarial example created using Szegedy et al.’s
method [206]. The adversarial example targets a DNN proposed by
Chatfield et al. [33]. (a) A benign image of a lion that is correctly
classified (probability assigned to the correct class, p=0.99). (b) An
adversarially perturbed image that is misclassified as a pelican (p=0.97).
(c) Absolute value of the pixel-wise differences between the adversarial
and the benign image. All differences are close to zero (i.e., almost black). 2

3.1 The eyeglass frames used to fool face-recognition systems (before texture
perturbation). By Clker-Free-Vector-Images / CC0 / https://goo.gl/
3RHKZA. 18

3.2 A dodging attack by perturbing an entire face. Left: an original image of
actress Eva Longoria (by Richard Sandoval / CC BY-SA / cropped from
https://goo.gl/7QUvRq). Middle: A perturbed image for dodging.
Right: The applied perturbation, after multiplying the absolute value of
pixels’ channels ×20. 21

3.3 An impersonation using frames. Left: Actress Reese Witherspoon (by
Eva Rinaldi / CC BY-SA / cropped from https://goo.gl/a2sCdc).
Image classified correctly with probability 1. Middle: Perturbing frames
to impersonate (actor) Russell Crowe. Right: The target (by Eva Rinaldi
/ CC BY-SA / cropped from https://goo.gl/AO7QYu). 21

3.4 Examples of successful impersonation and dodging attacks. Fig. (a)
shows SA (top) and SB (bottom) dodging against VGG10. Fig. (b)–(d)
show impersonations. Impersonators carrying out the attack are shown
in the top row and corresponding impersonation targets in the bottom
row. Fig. (b) shows SA impersonating Milla Jovovich (by Georges Biard
/ CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) SB imper-
sonating SC; and (d) SC impersonating Carson Daly (by Anthony Quin-
tano / CC BY / cropped from https://goo.gl/VfnDct). 24

3.5 The eyeglass frames used by SC for dodging recognition against VGG10. 24
3.6 An example of an invisibility attack. Left: original image of actor Kiefer

Sutherland. Middle: Invisibility by perturbing pixels that overlay the
face. Right: Invisibility with the use of accessories. 31

x

https://goo.gl/3RHKZA
https://goo.gl/3RHKZA
https://goo.gl/7QUvRq
https://goo.gl/a2sCdc
https://goo.gl/AO7QYu
https://goo.gl/GlsWlC
https://goo.gl/VfnDct

xi

4.1 An illustration of IPR. We show how the original code (a) changes after
replacing instructions with equivalent ones (b), reassigning registers (c),
reordering instructions (d), and changing the order of instructions that
save register values (e). We provide the hex encoding of each instruction
to its right. The affected instructions are boldfaced and colored in red. 39

4.2 A context-free grammar for generating semantic nops. S is the starting
symbol, Φ is the empty string, the symbol arth indicates an arithmetic
operation (specifically, add, sub, adc, or sbb), invarth indicates its
inverse, logic indicates a logical operation (specifically, and, or, or
xor), and r and v indicate a register and a randomly chosen integer,
respectively. 40

4.3 An example of displacement. The two instructions staring at address
0x4587 in the original code (a) are displaced to to starting address
0x4800. The original instructions are replaced with a jmp instruction
and a semantic nop. To consume the displacement budget, semantic
nops are added immediately after the displaced instructions and just
before the jmp the passes the control back to the original code. Seman-
tic nops are shown in boldface and red. 41

4.4 Attacks’ success rates in the white-box setting. For each attack and
DNN, we provide the percentage of misclassified malicious (a) and be-
nign (b) binaries. The brightly colored bars show the percentage of
binaries that were misclassified with high confidence. 46

4.5 An example of normalizing code via Eqv . The original code (a) is trans-
formed via Eqv (b) to decrease the lexicographic order. 52

4.6 The normalization process can get stuck in a local minima. The lexico-
graphic order of the original code (a) increases when reassigning registers
(b) or reordering instructions (c). However, composing the two trans-
formation (d) decreases the lexicographic order. 53

5.1 Examples of raw images of eyeglasses that we collected (left) and their
synthesis results (right). 62

5.2 Architectures of the neural networks used in this work. Inputs that are
intermediate (i.e., received from feature-extraction DNNs) have dotted
backgrounds. Deconv refers to transposed convolution, and FC to fully
connected layer. N -simplex refers to the set of probability vectors of N
dimensions, and the 128-sphere denotes the set of real 128-dimensional
vectors lying on the Euclidean unit sphere. All convolutions and decon-
volutions in G and D have strides and paddings of two. The detector’s
convolutions have strides of two and padding of one. The detector’s
max-pooling layer has a stride of two. 64

5.3 Examples of eyeglasses emitted by the generator (left) and similar eye-
glasses from the training set (right). 65

5.4 An example of digital dodging. Left: An image of actor Owen Wilson
(from the PubFig dataset [111]), correctly classified by VGG143 with
probability 1.00. Right: Dodging against VGG143 using AGN’s output
(probability assigned to the correct class <0.01). 70

xii

5.5 Examples of physically realized attacks. (a) SA (top) and SB (bottom)
dodging against OF143. (b) SC impersonating SE against VGG10. (c)
SB impersonating actor Brad Pitt (by Marvin Lynchard / CC BY 2.0 /
cropped from https://goo.gl/Qnhe2X) against VGG10. 73

5.6 Universal dodging against VGG143 and OF143. The x-axis shows the
number of subjects used to train the adversarial generators. When the
number of subjects is zero, a non-adversarial generator was used. The
y-axis shows the mean fraction of images misclassified (i.e., the dodging
success rate). The whiskers on the bars show the standard deviation
of the success rate, computed by repeating each experiment five times,
each time with a different set of randomly picked subjects. The color
of the bars denotes the number of eyeglasses used, as shown in the
legend. We evaluated each attack using one, two, five, or ten eyeglasses.
For example, the rightmost bar in (b) indicates that an AGN trained
with images of 100 subjects will generate eyeglasses such that 10 pairs of
eyeglasses will allow approximately 94% of subjects to evade recognition.
For ≤ 10 subjects, Alg. 4 was used to create the attacks. For 50 and
100 subjects, Alg. 5 was used. 78

5.7 The percentage of times in which eyeglasses from different sets were
marked as real. The horizontal 60% line is highlighted to mark that the
top half of “real” eyeglasses were marked as real at least 60% of the time. 80

5.8 An illustration of attacks generated via AGNs. Left: A random sample
of digits from MNIST. Middle: Digits generated by the pretrained gen-
erator. Right: Digits generated via AGNs that are misclassified by the
digit-recognition DNN. 82

6.1 An illustration of topology manipulation. Left: In a standard DNN,
perturbing the benign sample x in the direction of u leads to misclassifi-
cation as blue (zigzag pattern), while perturbing it in the direction of v
leads to misclassification as red (diagonal stripes). Right: In the topo-
logically manipulated DNN, direction u leads to misclassification as red,
while v leads to misclassification as blue. The benign samples (including
x) are correctly classified in both cases (i.e., high benign accuracy). . . 86

6.2 A concrete example of topology manipulation. The original image of a
horse (a) is adversarially perturbed to be misclassified as a bird (b) and
as a ship (c) by standard DNNs. The perturbations, which are limited
to L∞-norm of 8

255
, are shown after multiplying ×10. We trained a

topologically manipulated DNN to misclassify (b) as a ship and (c) as a
bird, while classifying the original image correctly. 87

6.3 The benign accuracy of n-ML ensembles of different sizes as we varied
the thresholds. For reference, we show the average accuracy of a single
standard DNN (avg. standard), as well as the accuracy of hypothetical
ensembles whose constituent DNNs are assumed to have independent
errors and the average accuracy of topologically manipulated DNNs (in-
dep. n). The dotted lines connecting the markers were added to help
visualize trends, but do not correspond to actual operating points. . . 96

https://goo.gl/Qnhe2X

xiii

6.4 Comparison of defenses’ performance in the black-box setting. The L∞-
norm of perturbations was set to ε = 0.3 for MNIST and ε = 8

255
for

CIFAR10 and GTSRB. Due to poor performance, the LID and NIC
curves were left out from the CIFAR10 plot after zooming in. The
dotted lines connecting the n-ML markers were added to help visualize
trends, but do not correspond to actual operating points. 97

6.5 Comparison of defenses’ performance in the grey-box setting. The L∞-
norm of perturbations was set to ε = 0.3 for MNIST and ε = 8

255
for

CIFAR10 and GTSRB. The dotted lines connecting the n-ML markers
were added to help visualize trends, but do not correspond to actual
operating points. 98

6.6 Comparison of defenses’ performance in the white-box setting. The L∞-
norm of perturbations were set to ε = 0.3 for MNIST and ε = 8

255
for

CIFAR10 and GTSRB. The dotted lines connecting the n-ML markers
were added to help visualize trends, but do not correspond to actual
operating points. 99

6.7 Performance of MNIST n-ML ensembles against L2-norm PGD attacks
with ε = 3. 99

6.8 Performance of face-recognition n-ML ensembles against AGN-based at-
tacks. 103

Chapter 1

Introduction

Despite their high performance in various challenging tasks (e.g., playing Go [195]
and poker [24], recognizing thousands of people in images [159], and diagnosing skin
cancer [56]), machine-learning (ML) algorithms in general, and deep neural networks
(DNNs) in particular, are vulnerable to evasion attacks at inference time [18, 82, 124,
206]: attackers can mislead ML algorithms by strategically manipulating inputs. Such
adversarially crafted inputs that mislead ML algorithms are often called adversarial
examples. Fig. 1.1 depicts an adversarial example against an object-recognition DNN.

Prior studies of evasion attacks focused primarily on the so-called imperceptible at-
tacks, in settings where the objective is to find perturbations with small Lp-norms1 and
the attackers have complete control over the inputs (e.g., [18, 66, 206]). While keeping
the perturbations’ Lp-norms small aims to ensure the attacks’ imperceptibility to hu-
mans, it is imperfect at doing so, as our work as well as others’ have shown [185, 189].
In particular, perturbations with small Lp-norms may produce inputs that would be
erroneously considered as imperceptible [185, 189]. Additionally, Lp-bounded pertur-
bations cannot produce various kinds of adversarial examples (e.g., by rotating im-
ages) [55, 78, 90, 174, 222]. Said differently, ensuring that the differences between
purported adversarial examples and their benign counterparts have small Lp-norms is
neither necessary nor sufficient for producing successful attacks [189]. Moreover, and
perhaps more importantly, prior attacks are often impractical. For example, an at-
tacker attempting to fool face recognition may only control her physical appearance,
and cannot precisely control the exact value of any pixel in the face image being clas-
sified.

This thesis aims to fill the gap by proposing evasion attacks with multiple objectives
(specifically, ones other than minimizing the Lp-norms of perturbations) that pose a
practical threat to state-of-the-art ML systems, including ones for face recognition and
malware detection. Then, to mitigate the risks of adversarial examples and improve
the security of ML systems at inference time, the thesis presents a novel defense that
uses diversified models in an ensemble to detect adversarial examples.

1Formally, the Lp-norm of a perturbation vector r (the difference between the perturbed and the
benign input) is denoted by ||r||p, and is defined as ||r||p = (

∑
i |r

p
i |)

1
p . Typically in the adversarial ML

literature, L0 (the number of non-zero entries in r) [31, 157], L2 (the Euclidean norm of r) [31, 206],
and L∞ (the largest absolute values of r’s entries) [31, 66] are used to quantify the imperceptibility
of evasion attacks.

1

1.1 Thesis Statement 2

(a) (b) (c)

Figure 1.1: An illustration of an adversarial example created using Szegedy et al.’s
method [206]. The adversarial example targets a DNN proposed by Chatfield et al. [33].
(a) A benign image of a lion that is correctly classified (probability assigned to the cor-
rect class, p=0.99). (b) An adversarially perturbed image that is misclassified as a
pelican (p=0.97). (c) Absolute value of the pixel-wise differences between the adver-
sarial and the benign image. All differences are close to zero (i.e., almost black).

1.1 Thesis Statement
Adversarial examples pose a practical security threat to ML systems at inference

time. Such adversarial examples can be generated by a general framework, even when
the characteristics necessary for their success elude precise specification. Ensembles of
diversified models can help mitigate attacks better than the state of the art.

To support this statement, we present four research studies:

Physical-world attacks against face recognition2 This study demonstrates how
to produce eyeglass frames that, when printed and worn, can be used by attackers to
dodge recognition (i.e., get arbitrarily misclassified as other individuals) or impersonate
specific individuals. To make the eyeglass frames physically realizable we require that
they satisfy multiple objectives: that they have smooth transitions between neighbor-
ing pixels (similarly to real images); that their colors can be printed by a commodity
printer; and that they would lead to misclassification under volatile imaging condi-
tions (e.g., different poses). We develop a systematic method to produce adversarial
eyeglass frames, and demonstrate successful attacks against state-of-the-art DNNs for
face recognition of the VGG architecture [159] (e.g., ≥80% success rate in all dodging
attempts in the physical environment).

Functionality-preserving attacks against malware detection3 This work demon-
strates how attackers can alter binaries to fool state-of-the-art DNNs for malware de-
tection from binaries’ raw bytes [107, 165]. In this domain, attackers face a non-trivial
objective: in addition to misleading the malware detectors, any alteration of a binary
must not harm its original, intended, functionality. We show that this objective can
be accommodated by the process of producing adversarial examples. Specifically, we
propose an attack that guides binary-diversification tools via optimization to mislead

2This work was published in the proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS), 2016 [191].

3This work is currently under submission [193].

1.2 Outline 3

DNNs for malware detection while preserving the functionality of binaries. Unlike
other attacks on such DNNs (e.g., [101, 108]), ours manipulates instructions that are a
functional part of the binary, which makes it particularly challenging to defend against.
We evaluated our attack against three DNNs in different settings, and found that it
can often achieve success rates near 100%.

A general framework for attacks with objectives4 The first two attacks model
the various objectives they consider in an ad hoc fashion. We complement them by
proposing a general framework for capturing objectives in the process of generating
adversarial examples. The framework builds on recent work in generative adversarial
networks (GANs) [65] to train an attack generator—a neural network that can gener-
ate attack instances that meet certain objectives. The framework is not only general,
but, unlike previous attacks, produces a large number of diverse adversarial examples
that meet the desired objectives. We refer to the framework using the anagram AGNs,
for adversarial generative nets, due to its basis in GANs. Via experiments in two ap-
plication domains—face and digit recognition—we demonstrate AGNs’ flexibility at
incorporating various objectives in the process of producing adversarial examples, and
particularly objectives that elude precise specification, but can be demonstrated via
examples (e.g., inconspicuousness). Compared to the previous attack on face recogni-
tion, AGNs are able to produce adversarial eyeglasses that are more inconspicuous and
robust to changes in the imaging environment.

Mitigating adversarial examples via ensembles of topologically manipulated
classifiers5 The last part of the thesis presents n-ML, a defense against adversarial
examples that is inspired by n-version programming [13, 34, 46]. While n-version pro-
gramming relies on independent programs to detect unexpected inputs that trigger
bugs or exploit vulnerabilities, n-ML uses an ensemble of diversified DNNs to detect
adversarial examples. At inference time, n-ML classifies inputs by a vote of the DNNs,
where each is trained via the topology manipulation method—a new method we propose
to train DNNs to classify benign inputs correctly and to (mis)classify adversarial exam-
ples differently than one another, according to a certain specification. Consequently,
the DNNs mostly agree when classifying benign inputs, and disagree on adversarial
examples, thus creating an opportunity to detect the latter. We evaluated n-ML in
various application domains (including face and street-sign recognition) and found that:
1) it roughly retains the benign accuracies of state-of-the-art models; 2) it outperforms
prior defenses (e.g., [126, 127]) at defending against adversarial examples (produced
via traditional Lp-based attacks or AGNs); and 3) it has lower inference-time overhead
than the majority of prior defenses we tested.

1.2 Outline
Before delving into the technical content of the thesis, we cover the relevant background
and related work (Chap. 2). Subsequently, we describe our attacks on face recognition
(Chap. 3) and malware detection (Chap. 4). Next, we present our AGNs framework

4This work was published in the ACM Transactions on Privacy and Security (TOPS), 2019 [192].
5This work is currently under submission [190].

1.2 Outline 4

(Chap. 5), followed by the n-ML defense (Chap. 6). We close the thesis with a summary
of our contributions and a discussion of future work (Chap. 7).

Chapter 2

Background and Related Work

In this chapter, we provide background and describe prior work on inference-time
attacks on ML algorithms and defenses against them. We first present typical attacks
that minimize Lp-norms of perturbations, followed by a discussion of attacks with
different objectives in the image and malware classification domains. Subsequently, we
provide an overview of prior defenses and link them to our work. Finally, we wrap the
chapter with a discussion of threat models that are typically considered in the area.

2.1 Attacks Minimizing Lp-norms
In concurrent research efforts, Szegedy et al. and Biggio et al. showed how to sys-
tematically find adversarial examples to fool DNNs [18, 206]. Given an input x that
is classified to F(x) by the DNN, Szegedy et al.’s goal was to find a perturbation r
of minimal L2-norm such that x + r would be classified to a desired target class ct.
They showed that, when the DNN function, F(·), and the norm function are differ-
entiable, finding the perturbation can be formalized as an optimization problem that
can be solved by standard techniques [150]. Differently from the minimal perturba-
tions proposed by Szegedy et al., Biggio et al. focused on finding perturbations that
would significantly increase the ML algorithm’s confidence in the target class [18].
Attacks akin to Biggio et al.’s are more suitable for the security domain, where one
may be interested in assessing the security of algorithms or systems under worst-case
attacks [19, 63].

More efficient algorithms were later proposed for finding even more imperceptible
adversarial examples (using different Lp-norms), or ones with higher confidence [31,
66, 83, 142, 145, 157, 176]. For example, Carlini and Wagner experimented with differ-
ent formulations of the optimization’s objective function for finding adversarial exam-
ples [31]. They proposed solving the following optimization problem to find adversarial
examples with perturbations of small L2-norms that target class ct:

arg min
r

Loss targ
cw (x+ r, ct) + κ · ||r||2

where x is a benign input, r is the perturbation, and κ helps tune the L2-norm of the
perturbation. Loss targ

cw is roughly defined as:

Loss targ
cw (x+ r, ct) = max

c 6=ct
{Lc(x+ r)} − Lct(x+ r)

5

2.2 Attacks with Other Objectives 6

where Lc is the output for class c at the logits of the DNN—the output of the one-
before-last layer. Minimizing Loss targ

cw leads x + r to be (mis)classified as ct. As this
formulation targets a specific class ct, the resulting attack is commonly referred to as
a targeted attack. In the case of evasion where the aim is to produce an adversarial
example that is misclassified as any class but the true class (commonly referred to as
untargeted attack), Lossuntarg

cw is used:

Lossuntarg
cw (x+ r, cx) = Lcx(x+ r)−max

c 6=cx
{Lc(x+ r)}

where cx is the true class of x. We use Losscw as a loss function to mislead DNNs in
several attacks (e.g., in Chap. 4).

The Projected Gradient Descent (PGD) attack is considered as the strongest first-
order attack (i.e., an attack that uses gradient decent to find adversarial examples) [129].
Starting from any random point close to a benign input, PGD consistently finds per-
turbations with constrained L2- or L∞-norms that achieve roughly the same loss value.
Given a benign input x, a loss function, say Losscw, a target class ct, a step size α, and
an upper bound on the norm ε, PGD iteratively updates the adversarial example until
a maximum number of iterations is reached such that:

xi+1 = Projectx,ε(xi + αsign(∇xLosscw(xi, ct)))

where Projectx,ε(·) projects vectors on the ε-ball around x (e.g., by clipping for L∞-
norm), and ∇xLosscw(·) denotes the gradient of the loss function. PGD starts from a
random point x0 in the ε-ball around x, and stops after a fixed number of iterations
(20–100 iterations are typical [129, 188]). We compare our AGNs framework with a
generalized variant of the PGD attack in Chap. 5, and use PGD to evaluate our n-ML
defense in Chap. 6.

Close to our AGNs framework (Chap. 5), Baluja and Fischer [15] proposed to train
an auto-encoding neural network that takes an image as input and outputs a per-
turbed version of the same image that would be misclassified. Follow-up research
efforts concurrent to ours proposed to train generative neural networks to create ad-
versarially perturbed images that lead to misclassification [161, 221, 234]. Differently
than our work, these attacks require only that the adversarial perturbations have small
Lp-norms.

2.2 Attacks with Other Objectives
While the majority of the work on evasion attacks against ML algorithms mainly
considers perturbations with bounded Lp-norms, similarity as measured by Lp distances
does not fit human perceptions [185, 189]. Moreover, attacks with bounded Lp-norms
are not suitable for evading ML systems in practical settings. In response, research
efforts explored attacks with other objectives. We describe such efforts in the image-
and malware-classification domains in what follows.

2.2 Attacks with Other Objectives 7

2.2.1 Image Domain

Imperceptibility via Non-Lp Metrics To ensure imperceptibility, researchers pro-
posed producing adversarial examples that are similar to their benign counterparts
as measured by metrics other than Lp-norms (e.g., [55, 78, 90, 174, 220, 222]). For
instance, Rozsa et al. proposed to produce adversarial examples that have high struc-
tural similarity (a standard metric for measuring similarity between images) with their
benign counterparts [174]. Akin to Lp-norms, other metrics do not fit human percep-
tion [185, 189].

Universality Moosavi et al. showed how to find universal adversarial perturbations,
which lead not just one image to be misclassified, but a large set of images [144].
Universal perturbations improve our understanding of DNNs’ limitations, as they show
that adversarial examples often lie in fixed directions (in the image RGB space) with
respect to their corresponding benign inputs. Differently from that work, in Chap. 5
we explore universal attacks that are both inconspicuous and constrained to a small
region.

Physical Realizability Kurakin et al. demonstrated that imperceptible adversarial
examples can fool DNNs even if the input to the DNN is an image of the adversarial
example printed on paper [112]. Their attack may not be practical in a security-
sensitive setting.

Following our work on physical-world attacks against face recognition (Chap. 3),
researchers showed that adversarial examples can be physically realized to fool other
image-recognition classifiers (e.g., [11, 36, 57, 197, 236]). For example, Evtimov et al.
showed that specially crafted patterns printed and affixed to street signs can mislead
DNNs for street-sign recognition [57], while Sitawarin et al. showed how to create
seemingly innocuous logos and ads that would be (mis)interpreted as street signs by
street-sign recognition [197].

Another line of work attempts to achieve privacy from face-recognition systems
by completely avoiding face detection [73, 228]. Essentially, face detection finds sub-
windows in images that contain faces, which are later sent for processing by face-recog-
nition systems. Consequently, by evading detection, one could avoid the post processing
of her face image by recognition systems. Differently from our work (Chap. 3 and
Chap. 5), the proposed techniques are not inconspicuous: they either use excessive
makeup [73] or attempt to blind the camera using light-emitting eyeglasses [228].

The susceptibility to physical-world attacks is not restricted to learning systems
that operate on visual inputs [27, 29, 42, 53, 162, 182, 233]. For instance, researchers
showed that speech-recognition systems can be misled to interpret sounds unintelligible
to humans as actual commands [29].

2.2.2 Malware Domain

Preserving Functionality In the realm of malware detection using ML classifiers,
researchers proposed attacks to evade ML-based malware classifiers while preserving the
(malicious) functionality of the malware. Some attacks (e.g., [48, 200, 215, 227]) tweak
malware to mimic benign files (e.g., by adding benign code-snippets to malicious PDF

2.3 Defending ML Algorithms 8

files). Other attacks (e.g., [4, 49, 68, 79, 101, 108, 205]) tweak malware using gradient-
based optimizations or generative methods (e.g., to find which APIs to import). A third
type of attacks uses a combination of mimicry and gradient-based optimizations [172].

Unlike some of the prior work (e.g., [4, 172, 215]) which studied attacks against dy-
namic ML-based malware detectors, in Chap. 4 we explore attacks that target DNNs
for malware detection from raw bytes (i.e., static detection methods) [107, 165]. Fur-
thermore, the attacks we explore do not take advantage of weaknesses in the feature-
extraction process by introducing adversarially crafted bytes to unreachable regions of
the binaries [101, 108, 205] (which may be possible to detect and sanitize statically, see
Chap. 4), or by mangling bytes in the headers of binaries [49] (which can be stripped
before classification [171]). Instead, the attacks we propose transform the original code
of binaries in a functionality-preserving manner to achieve misclassification.

More traditionally, attackers use various obfuscation techniques to evade malware
detection. Packing [20, 173, 207, 210]—encrypting binaries’ code and data, and then
decrypting them at run time—is commonly used to hide malicious content from static
detection methods. We only consider unpacked binaries, as is often the case for static
analysis methods [20, 107]. Attackers also obfuscate binaries by substituting instruc-
tions with others or altering the control flow graphs of binaries [38, 39, 89, 207]. We
found that such obfuscation methods do not fool the malware-detection DNNs when ap-
plied naïvely. To address this, our attacks leverage stochastic optimization techniques
to guide the transformation of binaries and mislead malware detection.

Perhaps most closely related to our work on misleading malware detection is the
recent work on misleading ML algorithms for authorship attribution [138, 163]. Meng
et al. proposed an attack to mislead authorship attribution at the binary level [138].
Unlike the attacks we propose, Meng et al. leverage weaknesses in feature extraction
and modify debug information and non-loadable sections to fool the ML models. Fur-
thermore, their method leaves a conspicuous footprint that the binary was modified
(e.g., by introducing multiple data and code sections to the binaries). While this is
potentially acceptable for evading author identification, it may raise suspicion when
evading malware detection. Quiring et al. recently proposed an attack to mislead
authorship attribution from source code [163]. In a similar spirit to our work, their
attack leverages an optimization algorithm to guide code transformations that change
syntactic and lexical features of the code (e.g., switching between printf and cout)
to mislead ML algorithms for authorship attribution.

2.3 Defending ML Algorithms
Researchers proposed a variety of defenses to mitigate ML algorithms’ vulnerability to
adversarial examples. Roughly speaking, defenses can be categorized as: adversarial
training, certified defenses, attack detection, or input transformation. In addition,
similarly to n-ML, some defenses leverage randomness or model ensembles as defesive
mechanisms. In what follows, we provide an overview of the different categories and
mechanisms.

Adversarial Training Augmenting the training data with correctly labeled adver-
sarial examples that are generated throughout the training process increases models’

2.3 Defending ML Algorithms 9

robustness to attacks [66, 91, 92, 113, 129, 188, 206]. The resulting training process is
commonly referred to as adversarial training. In particular, adversarial training with
PGD (AdvPGD) [129, 188] is one of the most effective defenses to date—we compare it
with our proposed n-ML defense (Chap. 6).

Certified Defenses Some defenses attempt to certify the robustness of trained ML
models (i.e., provide provable bounds on models’ errors for different perturbation mag-
nitudes). Certain certified defenses estimate how DNNs transform Lp balls around
benign examples via convex shapes, and attempt to force classification boundaries to
not cross the shapes (e.g., [103, 141, 166]). These defenses are less effective than ad-
versarial training with PGD [179]. Other defenses estimate the output of the so-called
smoothed classifier by classifying many variants of the input after adding noise at the
input or intermediate layers [43, 117, 122, 178]. The resulting smoothed classifier, in
turn, is proven to be robust against perturbations of different L2-norms. Unfortunately,
such defenses do not provide guarantees against other attacks (e.g., physically realiz-
able attacks, or ones with L∞-bounded adversarial perturbations), and perform less
well against them in practice [43, 117].

Attack Detection Similarly to n-ML, there were past proposals for defenses to
detect the presence of attacks [2, 60, 67, 80, 125, 126, 137, 139, 152, 217]. While
adaptive attacks have been shown to circumvent some of these defenses [10, 30, 125],
detectors often significantly increase the magnitude of the perturbations necessary to
evade DNNs and detectors combined [30, 126]. In Chap. 5, we show that AGNs can
fool face-recognition DNNs that are defended by Metzen et al.’s detector [139] (the
leading detector at the time of the work), and, in Chap. 6, we compare n-ML with
detection methods based on Local Intrinsic Dimensionality (LID) [127] and Network
Invariant Checking (NIC) [126], which are currently the leading methods for detecting
adversarial examples.

Metzen et al. proposed to train a neural network to detect adversarial exam-
ples [139]. The detector would take its input from an intermediate layer of a DNN and
decide whether the input is adversarial. Carlini and Wagner showed that an adaptive
attack, different than the ones on which the detector was originally evaluated against,
can evade detection [30]. The attack we show in Chap. 5 follows similar principles.

The LID detector uses a logistic regression classifier to tell benign and adversarial
inputs apart. The input to the classifier is a vector of LID statistics that are esti-
mated for every intermediate representation computed by the DNN. This approach is
effective because the LID statistics of adversarial examples are presumably distributed
differently than those of benign inputs [127].

The NIC detector expects certain invariants in DNNs to hold for benign inputs.
For example, it expects the provenance of activations for benign inputs to follow a
certain distribution. To model these invariants, a linear logistic regression classifier
performing the same task as the original DNN is trained using the representation
of every intermediate layer. Then, for every pair of neighboring layers, a one-class
Support Vector Machine (oc-SVM) is trained to model the distribution of the output
of the layers’ classifiers on benign inputs. Namely, every oc-SVM receives concatenated
vectors of probability estimates and emits a score indicative of how similar the vectors
are to the benign distribution. The scores of all the oc-SVM s are eventually combined

2.3 Defending ML Algorithms 10

to derive an estimate for whether the input is adversarial. In this manner, if the output
of two neighboring classifiers on an image, say that of a bird, is (bat, bird), the input
is likely to be benign (as the two classes are similar and likely have been observed for
benign inputs during training). However, if the output is (car, bird), then it is likely
that the input is adversarial.

Input Transformation Certain defenses suggest to transform inputs (e.g., via quan-
tization) to sanitize adversarial perturbations before classification [70, 121, 137, 180,
199, 223, 226]. The transformations often aim to hinder the process of computing gra-
dients for the purpose of attacks. In practice, however, it has been shown that attackers
can adapt to circumvent such defenses [9, 10, 75].

Randomness Defenses often leverage randomness to mitigate adversarial examples.
As previously mentioned, some defenses inject noise at inference time at the input or
intermediate layers [43, 80, 117, 122, 178]. Differently, Wang et al. train a hierarchy of
layers, each containing multiple paths, and randomly switch between the chosen paths
at inference time [219]. Other defenses randomly drop out neurons, shuffle them, or
change their weights, also while making inferences [60, 217]. Unlike all these, n-ML
uses randomness at training time to control how a set of DNNs classify adversarial
examples at inference time and uses the DNNs strategically in an ensemble to deter
adversarial examples.

Ensembles Similarly to n-ML, several prior defenses suggested using ensembles to
defend against adversarial examples. Abbasi and Gagné proposed to measure the
disagreement between DNNs and specialized classifiers (i.e., ones that classify one class
versus all others) to detect adversarial examples [2]. An adaptive attack to evade the
specialized classifiers and the DNNs simultaneously can circumvent this defense [75].
Vijaykeerthy et al. train DNNs sequentially to be robust against an increasing set of
attacks [212]. However, they only use the final model at inference time, while we use
an ensemble containing several models for inference. A meta-defense by Sengupta et
al. strategically selects a model from a pool of candidates at inference time to increase
benign accuracy while deterring attacks [186]. This defense is effective against black-
box attacks only (see Sec. 2.4). Other ensemble defenses propose novel training or
inference mechanisms, but do not achieve competitive performance [93, 153, 204].

Recent papers [128, 225, 232] proposed defenses that, like n-ML, are motivated
by n-version programming [13, 34, 46]. In a nutshell, n-version programming aims
to provide resilience to bugs and attacks by running n (≥2) variants of independently
developed, or diversified, programs. These programs are expected to behave identically
for normal (benign) inputs, and differently for unexpected inputs that trigger bugs or
exploit vulnerabilities. When one or more programs behaves differently than the others,
an unexpected (potentially malicious) input is detected. In the context of ML, defenses
that are inspired by n-version programming use ensembles of models that are developed
by independent parties [232], different inference algorithms or DNN architectures [128,
225], or models that are trained using different training sets [225]. In all cases, the
models are trained via standard training techniques. Consequently, the defenses are
often vulnerable to attacks. Moreover, prior work is limited to specific applications
(e.g., speech recognition [232]). In contrast, we train the models comprising the n-ML

2.4 Threat Models 11

ensembles via a novel training technique, and our work is conceptually applicable to
any domain (see Chap. 6).

2.4 Threat Models
Attacks and defenses are typically evaluated in three settings: black-, grey-, and white-
box (e.g., [137, 155–157]). The white-box setting is the most common in the literature.
In this setting, it is assumed that the attacker has complete knowledge of the deployed
ML model and the defense used to protect it, if any, including their parameters. In
consequence, the attacker can leverage her knowledge to perform the strongest evasion
attack against the model (e.g., by precisely computing gradients to solve an optimiza-
tion an produce successful adversarial examples). We consider the white-box setting
throughout Chaps. 3–6 of this work. In the black-box setting, the attacker only has
(possibly limited) query access to the deployed model, and does not know about the
existence of a defense, if any is deployed. In this setting, attackers typically follow
one of two directions: either they iteratively query the model and gradually refine the
adversarial example until successful evasion is accomplished [23, 85] (we consider such
attacks in Chaps. 3–4), or they transfer the attack from a surrogate model to which
they have complete access to the targeted model [155, 156] (we consider such attacks
in Chaps. 4–6). The grey-box setting is a middle ground between the black- and white-
box settings. In this setting, the attacker knows when a defense is deployed, and may
know the general architecture of the model and the defense. However, the attacker
does not know the exact parameters of the model and the defense. In response, the
attacker may be able to build a surrogate that better resembles the targeted model and
defense to transfer attacks from. We consider the grey-box setting when evaluating the
n-ML defense in Chap. 6.

Chapter 3

Physical-World Attacks Against Face
Recognition

3.1 Introduction
While the broad use of ML has also caused a rising interest to understand the extent to
which ML algorithms and applications are vulnerable to attacks, the early work did not
focus on practical attacks (see Chap. 2). For example, as in the spam-detection domain
where the attacker can precisely control the contents of emails and the address of the
sender, the domains that received the majority of the attention have the characteristic
that the adversary is able to precisely control the digital representation of the input to
the ML tools. In this chapter, we explore attacks to mislead facial biometric systems at
inference time. These systems are widely used for various sensitive purposes, including
surveillance and access control [143, 147, 149]. Thus, attackers who mislead them can
cause severe ramifications.

In contrast to domains previously explored, attackers who aim to mislead facial
biometric systems often do not have precise control over the systems’ input. Rather,
attackers may be able to control only their (physical) appearance. The process of
converting the physical scene into a digital input is not under the attackers’ control,
and is additionally affected by factors such as lighting conditions, pose, and distance.
As a result, it is more difficult for attackers to manipulate or craft inputs that would
cause misclassification than it would be, for example, in the domain of spam detection.

Another difficulty that attackers face in the case of facial biometric systems is that
manipulating inputs to evade the ML classifiers might be easily observed from outside
the systems. For example, attackers can wear an excessive amount of makeup in order
to evade a surveillance system deployed at banks [73]. However, these attackers may
draw an increased attention from bystanders, and can be deterred by traditional means,
e.g., the police.

In the light of these two challenges, we define and study a new class of attacks:
attacks that are physically realizable and at the same time are inconspicuous. In such
attacks, the attacker manipulates the physical state that an ML algorithm is analyzing
rather than the digitized representation of this state. At the same time, the manipula-
tions of physical state needed by the attacks are sufficiently subtle that they are either

12

3.1 Introduction 13

imperceptible to humans or, if perceptible, seem natural and not representative of an
attack.

Inconspicuousness We focus, unlike most related work (e.g., [73]), on attacks that
are inconspicuous, i.e., a person who is physically present at a scene, or a person who
looks at the input gathered by a sensor (e.g., by watching a camera feed), should not
notice that an attack is taking place.

We believe that this focus on attacks that are not readily apparent to humans is
important for two reasons: First, such attacks can be particularly pernicious, since
they will be resistant to at least cursory investigation. Hence, they are a particularly
important type of attacks to investigate and learn how to defend against. Second,
such attacks help the perpetrators (whether malicious or benign) achieve plausible
deniability ; e.g., a person seeking merely to protect her privacy against aggressive use
of face recognition by merchants will plausibly be able to claim that any failure of
an ML algorithm to recognize her is due to error or chance rather than deliberate
subterfuge.

Physical Realizability In this work, we are interested in attacks that can be phys-
ically implemented for the purpose of fooling facial biometric systems. In addition,
we focus on attacks on state-of-the-art algorithms. Previous work on misleading ML
algorithms often targets algorithms that are not as sophisticated or as well trained as
the ones used in practice (e.g., [61]), leaving the real-world implications of possible at-
tacks unclear. In contrast, we focus on those attacks that pose a realistic and practical
threat to systems that already are or can easily be deployed.

We divide the attacks we study into two categories, which differ both in the specific
motivations of potential attackers and in the technical approaches for implementing the
attacks. The two categories of attacks we are interested in are dodging and imperson-
ation. Both dodging and impersonation target face-recognition systems that perform
multi-class classification—in particular, they attempt to find the person to whom a
given face image belongs.

Impersonation In an impersonation (i.e., targeted) attack, the adversary seeks to
have a face recognized as a specific other face. For example, an adversary may try to
(inconspicuously) disguise her face to be recognized as an authorized user of a laptop
or phone that authenticates users via face recognition. Or, an attacker could attempt
to confuse law enforcement by simultaneously tricking multiple geographically distant
surveillance systems into “detecting” her presence in different locations.

Dodging In a dodging (i.e., untargeted) attack, the attacker seeks to have her face
misidentified as any other arbitrary face. From a technical standpoint, this category
of attack is interesting because causing an ML system to arbitrarily misidentify a face
should be easier to accomplish with minimal modifications to the face, in comparison
to misclassifying a face as a particular impersonation target. In addition to malicious
purposes, dodging attacks could be used by benign individuals to protect their privacy
against excessive surveillance.

In this chapter we demonstrate inconspicuous and physically realizable dodging
and impersonation attacks against face-recognition systems. We detail the design of
eyeglass frames that, when printed and worn, permitted three subjects (specifically, the

3.2 Technical Approach 14

author of the thesis and two collaborators) to succeed at least 80% of the time when
attempting dodging against state-of-the-art face-recognition systems models. Other
versions of eyeglass frames allowed subjects to impersonate randomly chosen targets.
For example, they allowed one subject, a white male, to impersonate Milla Jovovich,
a white female, 87.87% of the time; a South-Asian female to impersonate a Middle-
Eastern male 88% of the time; and a Middle-Eastern male to impersonate Clive Owen,
a white male, 16.13% of the time. We also show various other results as extensions
to our core methods, in accomplishing impersonation with less information (i.e., in a
black-box setting) and in evading face detection.

Our contributions in this chapter are threefold:

1. We show how an attacker that knows the internals of a state-of-the-art face-rec-
ognition system (i.e., in a white-box setting) can physically realize impersonation
and dodging attacks. We further show how these attacks can be constrained to
increase their inconspicuousness (Sec. 3.2–3.3).

2. Using a commercial face-recognition system [135], we demonstrate how an at-
tacker that is unaware of the system’s internals (i.e., in a black-box setting) is
able to achieve inconspicuous impersonation (Sec. 3.4).

3. We show how an attacker can be invisible to facial biometric systems by avoiding
detection through the Viola-Jones face detector, the most popular face-detection
algorithm [213] (Sec. 3.5).

In Sec. 3.2 we describe our method for generating physically realizable white-box
attacks, and detail experiments that show its effectiveness in Sec. 3.3. We demonstrate
that similar attacks can be carried out against black-box face-recognition systems in
Sec. 3.4, and that they can additionally be used to evade face detection in Sec. 3.5. We
discuss the implications and limitations of our approach in Sec. 3.6 and conclude with
Sec. 3.7.

3.2 Technical Approach
In this section we describe our approach to attacking white-box face-recognition sys-
tems. First, we provide the details of the state-of-the-art face-recognition systems we
attack (Sec. 3.2.1). Then, we present how we build on previous work [66, 157, 206]
to formalize how an attacker can achieve impersonation, and how to generalize the
approach for dodging (Sec. 3.2.2). Finally, we discuss how the attacker can conceptu-
ally and formally tweak her objective to enable the physical realizability of the attack
(Sec. 3.2.3).

We used MatConvNet [211], an neural networks toolbox for MATLAB, to train and
run face-recognition DNNs, and to test our attacks. An implementation can be found
online at: https://github.com/mahmoods01/accessorize-to-a-crime.

https://github.com/mahmoods01/accessorize-to-a-crime

3.2 Technical Approach 15

3.2.1 White-Box DNNs for Face Recognition

Using ML models and particularly DNNs, researchers have developed face-recognition
systems that can outperform humans in their ability to recognize faces [81]. Parkhi et
al. developed a 39-layer DNN for face recognition and verification that achieves state-
of-the-art performance (and outperforms humans) [159] on the Labeled Faces in the
Wild (LFW) [81] challenge, a benchmark for testing face-recognition systems’ ability
to classify images taken under unconstrained conditions.

To demonstrate dodging and impersonation we use three DNNs: First, we use the
DNN developed by Parkhi et al.,1 which we refer to as VGG2622. Second, we trained
two DNNs (termed VGG10 and VGG143) based on the structure of Parkhi et al.’s to
recognize celebrities as well as people who were available to us in person for testing real
attacks. The purpose of using VGG10 and VGG143 is to test the physically realized
versions of our attacks, which require people to wear glasses designed by our algorithm.
Testing dodging requires the subjects to be known to the classifier (otherwise they
would always be misclassified). Similarly, testing impersonation is more realistic (and
more difficult for the attacker) if the DNN is able to recognize the impersonator. The
DNNs we use in this work can be conceptualized as differentiable functions that map
input images to probability distributions over classes. An image is counted as belonging
to the class that receives the highest probability, optionally only if that probability
exceeds a predefined threshold.
VGG2622 Parkhi et al. trained VGG2622 to recognize 2622 celebrities. They used
roughly 1000 images per celebrity for training, for a total of about 2.6M images. Even
though they used much less data for training than previous work (e.g., Google used
200M [183]), their DNN still achieves 98.95% accuracy, comparable to other state-of-
the-art DNNs [81].
VGG10 and VGG143 Using VGG2622 for physical realizability experiments is
not ideal, as it was not trained to recognize people available to us for testing physically
realized attacks. Therefore, we trained two additional DNNs.

VGG10 was trained to recognize ten subjects: five people from our lab (the author
of the thesis, two collaborators, and two additional researchers who volunteered images
for training), and five celebrities for whom we picked images from the PubFig image
dataset [111]. In total, the training set contained five females and five males of ages
20 to 53 years. The celebrities we used for training were: Aaron Eckhart, Brad Pitt,
Clive Owen, Drew Barrymore, and Milla Jovovich.

VGG143 was trained to recognize a larger set of people, arguably posing a tougher
challenge for attackers attempting impersonation attacks. In total, VGG143 was
trained to recognize 143 subjects: 140 celebrities from PubFig’s [111] evaluation set,
the author of the thesis, and two collaborators.

We trained VGG10 and VGG143 via transfer learning, a traditional procedure to
train DNNs from other, pre-trained, DNNs [229]. Transfer learning reduces the need
for large amounts of data for training a DNN by repurposing a pre-trained DNN for
a different, but related, classification task. This is performed by copying an initial
set of layers from the existing DNN, appending new layers to them, and training the
parameters of the new layers for the new task. Consequently, the layers copied from the

1http://www.robots.ox.ac.uk/~vgg/software/vgg_face/

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/

3.2 Technical Approach 16

old network serve for feature extraction and the extracted features are fed to the new
layers for classification. Previous work has shown that transfer learning is effective in
training high-performance DNNs from ones that have already been trained when they
perform closely related tasks [229].

We followed the suggestion of Yosinski et al. [229] to train VGG10 and VGG143.
More specifically, we used the first 37 layers of VGG2622 for feature extraction. Then,
we appended a fully connected layer of neurons followed by a softmax layer, and up-
dated the weights in the fully connected layer via the back-propagation algorithm. The
neurons in the fully-connected layers serve as linear classifiers that classify the features
extracted by VGG2622 into identities, and the softmax layer transforms their output
into a probability distribution. Training more layers (i.e., more parameters to tune)
was prohibitive, as the amount of data we could collect from people available for test-
ing physically realizable attacks was limited. We used about 40 images per subject
for training—an amount of images that was small enough to collect, but high enough
to train highly performing DNNs. On images held aside for testing, VGG10 achieved
classification accuracy of 97.43%, and VGG143 achieved accuracy of 96.75%.

Similarly to Parkhi et al., we used 2d affine alignment to align face images to a
canonical pose at the input of the DNNs [159]. Additionally, we resized input images
to 224× 224 (the input dimensionality of the DNNs we use).

3.2.2 Attacking White-Box Face-Recognition Systems

Following Parkhi et al. we adopt the cross-entropy loss (Lossce) score to measure the
correctness of classifications [159]. Formally, given an input x of class cx that is classified
as F(x) (a vector of probabilities), Lossce is defined as follows:

Lossce(F(x), cx) = − log(〈Hcx ,F(x)〉)

where 〈·, ·〉 denotes inner product between two vectors, N is the number of classes,
and Hc is the one-hot vector of class c. It follows that Lossce is lower when the DNN
classifies x correctly, and higher when the classification is incorrect. We use Lossce to
define the impersonation and dodging objectives of attackers.
Impersonation An attacker who wishes to impersonate a target t needs to find how
to perturb the input x via an addition r to maximize the probability of class ct. Szegedy
et al. defined this as minimizing the distance between F(x+r) and the ct (see Sec. 2.1).
Similarly, we define the optimization problem to be solved for impersonation as:

argmin
r

Lossce(F(x+ r), ct)

In other words, we seek to find a modification r of image x that will minimize the
distance of the modified image to the target class ct.
Dodging In contrast to an attacker who wishes to impersonate a particular target,
an attacker who wishes to dodge recognition is only interested in not being recognized
as herself. To accomplish this goal, the attacker needs to find how to perturb the input
x to minimize the probability of the class cx. Such a perturbation r would maximize
the value of Lossce(F(x + r), cx). To this end, we define the optimization problem for

3.2 Technical Approach 17

dodging as:

argmin
r

(
− Lossce(F(x+ r), cx)

)
To solve these optimizations, we use the Gradient Descent (GD) algorithm [22].

GD is guaranteed to find a global minimum only when the objective is convex, but
in practice often finds useful solutions regardless. In a nutshell, GD is an iterative
algorithm that takes an initial solution to r and iteratively refines it to minimize the
objective. GD iteratively evaluates the gradient, g, and updates the solution by r =
r − αg, for a positive value α (i.e., r is updated by “stepping” in the direction of the
steepest descent). GD stops after convergence (i.e., changes in the objective function
become negligible) or after a fixed number of iterations. In our work, we fix the number
of iterations.

3.2.3 Facilitating Physical Realizability

Accomplishing impersonation or dodging in a digital environment does not guarantee
that the attack will be physically realizable, as our experiments in Sec. 3.3.1 show.
Therefore, we take steps to enable physical realizability. The first step involves imple-
menting the attacks purely with facial accessories (specifically, eyeglass frames), which
are physically realizable via 3d- or even 2d-printing technologies. The second step in-
volves tweaking the mathematical formulation of the attacker’s objective to focus on
adversarial perturbations that are a) robust to small changes in viewing condition; b)
smooth (as expected from natural images); and c) realizable by affordable printing
technologies. In what follows, we describe the details of each step.

Utilizing Facial Accessories While an attacker who perturbs arbitrary pixels that
overlay her face can accomplish impersonation and dodging attacks, the perturbations
may be impossible to implement successfully in practice (see Sec. 3.3.1). To address
this, we utilize perturbed facial accessories (in particular, eyeglass frames) to imple-
ment the attacks. One advantage of facial accessories is that they can be easily im-
plemented. In particular, we use a commodity inkjet printer (Epson XP-830) to print
the front plane of the eyeglass frames on glossy paper, which we then affix to actual
eyeglass frames when physically realizing attacks. Moreover, facial accessories, such
as eyeglasses, help make attacks plausibly deniable, as it is natural for people to wear
them.

Unless otherwise mentioned, in our experiments we use the eyeglass frames depicted
in Fig. 3.1. These have a similar design to frames called “geek” frames in the eyewear
industry.2 We select them because of the easy availability of a digital model. After
alignment, the frames occupy about 6.5% of the pixels of the 224 × 224 face images,
similarly to real frames we have tested. This implies that the attacks perturb at most
6.5% of the pixels in the image.

To find the color of the frames necessary to achieve impersonation or dodging
we first initialize their color to a solid color (e.g., yellow). Subsequently, we render
the frames onto the image of the subject attempting the attack and iteratively update

2E.g., see: https://goo.gl/Nsd20I

https://goo.gl/Nsd20I

3.2 Technical Approach 18

Figure 3.1: The eyeglass frames used to fool face-recognition systems (before texture
perturbation). By Clker-Free-Vector-Images / CC0 / https://goo.gl/3RHKZA.

their color through the GD process. In each iteration, we randomize the position of the
frames around a reference position by moving them by up to three pixels horizontally
or vertically, and by rotating them up to four degrees. The rationale behind doing
so is to craft adversarial perturbations that are tolerant to slight movements that are
natural when physically wearing the frames.

Enhancing Perturbations’ Robustness Due to varying imaging conditions, such
as changes in expression and pose, two images of the same face are unlikely to be
exactly the same. As a result, to successfully realize the attacks, attackers need to find
perturbations that are independent of the exact imaging conditions. In other words, an
attacker would need to find perturbations that generalize beyond a single image, and
can be used to deceive the face-recognition systems into misclassifying many images of
the attacker’s face.

Thus far, the techniques to find perturbations were specific to a given input. To
enhance the generality of the perturbations, we look for perturbations that can cause
any image in a set of inputs to be misclassified. To this end, an attacker collects a set of
images, X, and finds a single perturbation that optimizes her objective for every image
x ∈ X. For impersonation, we formalize this as the following optimization problem
(dodging is analogous):

argmin
r

∑
x∈X

Lossce(F(x+ r), l)

Enhancing Perturbations’ Smoothness Natural images (i.e., those captured in
reality) are known to comprise smooth and consistent patches, where colors change
only gradually within patches [130]. Therefore, to enhance plausible deniability, it is
desirable to find perturbations that are smooth and consistent. In addition, due to
sampling noise, extreme differences between adjacent pixels in the perturbation are
unlikely to be accurately captured by cameras. Consequently, perturbations that are
non-smooth may not be physically realizable.

To maintain the smoothness of perturbations, we update the optimization to ac-
count for minimizing total variation (TV) [130]. For a perturbation r, TV (r) is defined
as:

TV (r) =
∑
i,j

(
(ri,j − ri+1,j)

2 + (ri,j − ri,j+1)
2
) 1

2

where ri,j are is a pixel in r at coordinates (i, j). TV (r) is low when the values of
adjacent pixels are close to each other (i.e., the perturbation is smooth), and high
otherwise. Hence, by minimizing TV (r) we improve the smoothness of the perturbed
image and improve physical realizability.

https://goo.gl/3RHKZA

3.3 Evaluation 19

Enhancing Perturbations’ Printability The range of colors that devices such as
printers and screens can reproduce (the color gamut) is only a subset of the [0, 1]3

RGB color space. Thus, to be able to successfully use a printer to realize adversarial
perturbations, it is desirable to craft perturbations that are comprised mostly of colors
reproducible by the printer. To find such perturbations, we define the non-printability
score (NPS) of images to be high for images that contain unreproducible colors, and
low otherwise. We then include minimizing the non-printability score as part of our
optimization.

Let P ⊂ [0, 1]3 be the set of printable RGB triplets. We define the NPS of a pixel
p̂ as:

NPS (p̂) =
∏
p∈P

|p̂− p|

If p̂ belongs to P , or if it is close to some p ∈ P , then NPS (p) will be low. Otherwise,
NPS (p) will be high. We intuitively generalize the definition of NPS of a perturbation
as the sum of NPS s of all the pixels in the perturbation.

In practice, to approximate the color gamut of a printer, we print a color palette
that comprises a fifth of the RGB color space (with uniform spacing). Subsequently,
we capture an image of the palette with a camera to acquire a set of RGB triplets that
can be printed. As the number of unique triplets is large (≥ 10K), the computation of
NPS becomes computationally expensive. To this end, we quantize the set of colors to
a set of 30 RGB triplets that have a minimal variance in distances from the complete
set, and use only those in the definition of NPS ; this is an optimization that we have
found effective in practice.

In addition to having limited gamut, printers do not reproduce colors faithfully, i.e.,
the RGB values of a pixel requested to be printed do not correspond exactly to the RGB
values of the printed pixel. To allow us to realize perturbations with high fidelity, we
create a map m that maps colors (i.e., RGB triplets) requested to be printed to colors
that are actually printed. We then utilize this map to realize perturbations with high
fidelity. In particular, to print a perturbation as faithfully as possible, we replace the
value p of each pixel in the perturbation with p̃, such that the printing error, |p−m(p̃)|,
is minimized. This process can be thought of as manual color management [106].

3.3 Evaluation
We separately evaluate attacks that take place purely in the digital domain (Sec. 3.3.1)
and physically realized attacks (Sec. 3.3.2).

3.3.1 Digital-Environment Experiments

We first discuss experiments that assess the difficulty of deceiving face-recognition
systems in a setting where the attacker can manipulate the digital input to the system,
i.e., modify the images to be classified on a per-pixel level. Intuitively, an attacker who
cannot fool face-recognition systems successfully in such a setting will also struggle to
do so physically in practice.

3.3 Evaluation 20

Exp. # Area perturbed Goal Model # Attackers Success rate

1 Entire face Dodging VGG2622 20 100.00%
2 Entire face Impersonation VGG2622 20 100.00%
3 Eyeglass frames Dodging VGG2622 20 100.00%
4 Eyeglass frames Dodging VGG10 10 100.00%
5 Eyeglass frames Dodging VGG143 20 100.00%
6 Eyeglass frames Impersonation VGG2622 20 91.67%
7 Eyeglass frames Impersonation VGG10 10 100.00%
8 Eyeglass frames Impersonation VGG143 20 100.00%

Table 3.1: A summary of the digital-environment experiments attacking VGG2622,
VGG10, and VGG143 under the white-box scenario. In each attack we used three
images of the subject that we sought to misclassify; the reported success rate is the
mean success rate across those images.

Experiment Description We ran eight dodging and impersonation attacks (see
Sec. 3.2.2) on the white-box DNNs presented in Sec. 3.2.1. Between experiments, we
varied (1) the attacker’s goal (dodging or impersonation), (2) the area the attacker
can perturb (the whole face or just eyeglass frames that the subject wears), and (3)
the DNN that is attacked (VGG2622, VGG10, or VGG143). The frames we used are
depicted in Fig. 3.1.

We measured the attacker’s success (success rate) as the fraction of attempts in
which she was able to achieve her goal. For dodging, the goal is merely to be misclas-
sified, i.e., the DNN, when computing the probability of the image belonging to each
target class, should find that the most probable class is one that does not identify the
attacker. For impersonation, the goal is to be classified as a specific target, i.e., the
DNN should compute that the most probable class for the input image is the class that
identifies the target. In impersonation attempts, we picked the targets randomly from
the set of people the DNN recognizes.

To simulate attacks on VGG2622 and VGG143, we chose at random 20 subjects
for each experiment from the 2622 and 143 subjects, respectively, that the DNNs were
trained on. We simulated attacks on VGG10 with all ten subjects it was trained to
recognize. To compute statistics that generalize beyond individual images, we per-
formed each attack (e.g., each attempt for subject X to impersonate target Y) on three
images of the subject and report the mean success rate across those images. We ran
the gradient descent process for at most 300 iterations, as going beyond that limit has
diminishing returns in practice. A summary of the experiments and their results is
presented in Table 3.1.

Experiment Results In experiments 1 and 2 we simulated dodging and imper-
sonation attacks in which the attacker is allowed to perturb any pixel on her face.
The attacker successfully achieved her goal in all attempts. Moreover, the adversarial
examples found under these settings are likely imperceptible to humans (similar to
adversarial examples found by Szegedy et al. [206]): the mean perturbation of a pixel

3.3 Evaluation 21

Figure 3.2: A dodging attack by perturbing an entire face. Left: an original image
of actress Eva Longoria (by Richard Sandoval / CC BY-SA / cropped from https:
//goo.gl/7QUvRq). Middle: A perturbed image for dodging. Right: The applied
perturbation, after multiplying the absolute value of pixels’ channels ×20.

Figure 3.3: An impersonation using frames. Left: Actress Reese Witherspoon (by
Eva Rinaldi / CC BY-SA / cropped from https://goo.gl/a2sCdc). Image classified
correctly with probability 1. Middle: Perturbing frames to impersonate (actor) Russell
Crowe. Right: The target (by Eva Rinaldi / CC BY-SA / cropped from https:
//goo.gl/AO7QYu).

that overlaid the face was 1.7, with standard deviation 0.93. An example is shown in
Fig. 3.2.

We believe that the types of attacks examined in experiments 1 and 2 are far from
practical. Because the perturbations are too subtle and lack structure, they may be
too complicated to physically realize, e.g., it is likely to be impossible to modify a
human face in exactly the way required by the attack. Moreover, the amount by which
pixels are perturbed is often much smaller than the error that occurs when printing a
perturbation and then capturing it with a scanner or a camera. Our experiments show
that the average error per pixel in a perturbation when printed and scanned is 22.9,
and its standard deviation is 38.22. Therefore, even if the attacker can successfully
realize the perturbation, she is still unlikely to be able to deceive the system.

To this end, in experiments 3–8 we simulated dodging and impersonation attacks in
which we perturbed only eyeglass frames of eyeglasses worn by each subject. With the
exception of experiment 6, the attacker was able to dodge recognition or impersonate
targets in all attempts. In experiment 6 impersonators succeeded in about 91.67%
of their attempts to fool VGG2622 using perturbed eyeglasses. We hypothesize that
due to the large number of classes VGG2622 recognizes, the image space between
some attacker-target pairs is occupied by other classes. Therefore, impersonating these
targets requires evading several classification boundaries, making impersonation attacks
more difficult. Fig. 3.3 shows an example of a successful impersonation attempt using
eyeglass frames.

https://goo.gl/7QUvRq
https://goo.gl/7QUvRq
https://goo.gl/a2sCdc
https://goo.gl/AO7QYu
https://goo.gl/AO7QYu

3.3 Evaluation 22

3.3.2 Physical-Realizability Experiments

As discussed in Sec. 3.2.3, to physically realize an attack, we utilize a set of perturbed
eyeglass frames, ensure that the perturbation is smooth and effective for misclassifying
more than one image, and enhance the reproducibility of the perturbation’s colors by
the printing device. To achieve these goals and impersonate a target t, an attacker
finds a perturbation by solving the following optimization problem:

argmin
r

((∑
x∈X

Lossce(x + r , ct)
)

+ κ1 · TV (r) + κ2 · NPS (r)
)

where κ1 and κ2 are constants for balancing the objectives and X is a set of images of
the attacker. The formulation for dodging is analogous.

In this section we report on experiments for evaluating the efficacy of this approach
in fooling VGG10 and VGG143 under semi-controlled imaging conditions.

Experiment Description Two collaborators on the projects (SA, a 41-year-old
white male, and SB, a 24-year-old South Asian female, at the time of the experiment),
and the author of the thesis (SC, a 24-year-old Middle Eastern male at the time of the
experiment), whom VGG10 and VGG143 were trained to recognize. For each subject
we attempted two dodging attacks and two impersonation attacks—one of each type
of attack on each of VGG10 and VGG143. The targets in impersonation attacks were
randomly selected (see Table 3.2).

We collected images of the subjects using a Canon T4i camera. To prevent extreme
lighting variations, we collected images in a room without exterior windows. Subjects
stood a fixed distance from the camera and were told to maintain a neutral expression
and to make slight pose changes throughout the collection. While these collection
conditions are only a subset of what would be encountered in practice, we believe they
are realistic for some scenarios where face-recognition system technology is used, e.g.,
within a building for access control.

For each subject, we collected 30–50 images in each of five sessions. In the first
session, we collected a set of images that was used for generating the attacks (referred
to as the set X in the mathematical representation). In this session, the subjects
did not wear the eyeglass frames. In the second and third sessions, the subjects wore
eyeglass frames to attempt dodging against VGG10 and VGG143, respectively. In
the fourth and the fifth sessions, the subjects wore frames to attempt impersonation
against VGG10 and VGG143.

We physically realized attacks by printing the eyeglass frames with an Epson XP-830
printer on Epson Glossy photo paper. Realizing these attacks is cheap and affordable;
the approximate cost for printing an eyeglass frame is $0.22. Once printed, we cut out
the frames and affixed them to the frames of an actual pair of eyeglasses. Examples of
realizations are shown in Fig. 3.4.

To find the perturbation, the parameters κ1 and κ2 in the optimization were set to
0.15 and 0.25, respectively. The computational overhead of mounting attacks prohib-
ited a broad exploration of the parameter space, but we found these values effective in
practice. In addition, we limited the number of iterations of the GD process to 300.

3.3 Evaluation 23

Subj- Dodging Impersonation
DNN ect SR E(p(cx)) Target SR HC E(p(ct))

SA 100.00% 0.01 Milla Jovovich 87.87% 48.48% 0.78
VGG10 SB 97.22% 0.03 SC 88.00% 75.00% 0.75

SC 80.00% 0.35 Clive Owen 16.13% 0.00% 0.33
SA 100.00% 0.03 John Malkovich 100.00% 100.00% 0.99

VGG143 SB 100.00% <0.01 Colin Powell 16.22% 0.00% 0.08
SC 100.00% <0.01 Carson Daly 100.00% 100.00% 0.90

Table 3.2: A summary of the physical realizability experiments. To the left, we report
the DNN attacked and the identity of the subjects (the attackers in the simulation).
When not attempting to fool both DNNs, the subjects were originally classified cor-
rectly with mean probability >0.85. SR is the success rate. HC is the success rate when
the attacker’s image is misclassified as the target with high confidence (i.e., above a
threshold set to balance the security and the usability of the face-recognition system).
E(p(c)) is the mean (expected) probability of the class when classifying all images (cx
is the correct class, ct is the target class). Results for SC when attacking VGG10 were
achieved with glasses that occupy 10% of the area of the image being classified; results
for the other experiments were achieved with glasses that occupy 6% of the image.

Experiment Results To evaluate VGG10 and VGG143 in a non-adversarial setting,
we classified the non-adversarial images collected in the first session. All the face images
of the three subjects were classified correctly. The mean probability of the correct class
across the classification attempts was above 0.85, which implies that naive attempts at
impersonation or dodging are highly unlikely to succeed. In contrast, our experiments
showed that an attacker who intentionally attempts to deceive the system will usually
succeed. Table 3.2 summarizes these results. Fig. 3.4 presents examples of successful
dodging attacks and impersonations.

All three subjects successfully dodged face recognition by wearing perturbed eye-
glass frames. When wearing frames for dodging, as shown in Fig. 3.4a, all of SA’s
images collected in the second and the third sessions were misclassified by VGG10 and
VGG143, respectively. When dodging, the mean probability VGG10 assigned to the
SA’s class dropped remarkably from 1 to 0.01. Similarly, the mean probability assigned
to cSA by VGG143 dropped from 0.85 to 0.03. Thus, the dodging attempts made it
highly unlikely that the DNNs would output cSA , the correct classification result. SB

was able to dodge recognition in 97.22% of the attempts against VGG10 and in 100%
of the attempts against VGG143. When classifying SB’s images, the mean probability
assigned by the DNNs to cSB became ≤ 0.03 as a result of the attack, also making it
unlikely to be the class assigned by the DNN.

SC’s attempts in dodging recognition against VGG143 were also successful: all his
images collected in the third session were misclassified, and the probability assigned to
cSC was low (<0.01). However, when wearing a perturbed version of the frames shown
in Fig. 3.1; none of SC’s images collected as part of the second session misled VGG10.
We conjecture that because SC was the only subject who wore eyeglasses among the

3.3 Evaluation 24

(a) (b) (c) (d)

Figure 3.4: Examples of successful impersonation and dodging attacks. Fig. (a) shows
SA (top) and SB (bottom) dodging against VGG10. Fig. (b)–(d) show impersonations.
Impersonators carrying out the attack are shown in the top row and corresponding
impersonation targets in the bottom row. Fig. (b) shows SA impersonating Milla
Jovovich (by Georges Biard / CC BY-SA / cropped from https://goo.gl/GlsWlC);
(c) SB impersonating SC; and (d) SC impersonating Carson Daly (by Anthony Quintano
/ CC BY / cropped from https://goo.gl/VfnDct).

Figure 3.5: The eyeglass frames used by SC for dodging recognition against VGG10.

subjects used for training VGG10, cSC became a likely class when classifying images
showing people wearing eyeglasses. Therefore, it became particularly hard for SC to
fool VGG10 by perturbing only a small area of the image. Nevertheless, by increasing
the size of the frames such that they occupied 10% of the area of the aligned image
(frames shown in Fig. 3.5) it became possible for SC to achieve physically realizable
dodging at the cost of decreased inconspicuousness. Using the larger frames, SC was
able to dodge recognition in 80% of the images (mean probability of cSC dropped to
0.35).

To simulate impersonation attempts, each subject was assigned two random targets:
one for fooling VGG10 and one for fooling VGG143. SA was assigned to impersonate
Milla Jovovich, a 40-year-old white female, and John Malkovich, a 62-year-old white
male; SB was assigned to impersonate SC, and Colin Powell, a 79-year-old white male;
and SC was assigned to impersonate Clive Owen, a 51-year-old male, and Carson Daly,
a 43-year-old male.

Both of SA’s impersonation attempts were successful: 87.87% of his images col-
lected in the fourth session were misclassified by VGG10 as Milla Jovovich (the mean
probability of the target was 0.78), and all the images collected in the fifth session were

https://goo.gl/GlsWlC
https://goo.gl/VfnDct

3.3 Evaluation 25

misclassified as John Malkovich (mean probability of 0.99). In contrast, SB and SC

had mixed success. On the one hand, SB misled VGG10 by successfully impersonat-
ing SC in 88% of her attempts (the mean probability of the target was 0.75), and SC

misled VGG143 into misclassifying him as Carson Daly in all of his attempts (mean
probability of 0.99). On the other hand, they were able to successfully impersonate
Colin Powell and Clive Owen3 (respectively) only in about one of every six attempts.
This success rate may be sufficient against, e.g., access-control systems that do not
limit the number of recognition attempts, but may not be sufficient against systems
that limit the number of attempts or in surveillance applications. We hypothesize that
some targets are particularly difficult for some subjects to impersonate. We also be-
lieve, however, that even in those cases further refinement of the attacks can lead to
greater success than we have so far measured.

In practice, to tune the security of a face-recognition system, system operators may
set a minimum threshold that the maximum probability in the DNN’s output will
have to exceed for a classification result to be accepted. Such a threshold balances
security and usability: If the threshold is high, misclassification occurs less often, but
correct classifications may be rejected, thus harming usability. On the other hand,
for low thresholds, correct classifications will be accepted most of the time, but mis-
classifications are more likely to occur, which would harm security. Therefore, system
operators usually try to find a threshold that balances the usability and the security
of the deployed face-recognition system. Using the test data, we found that by setting
the threshold to 0.85, the false acceptance rate of VGG10 became 0, while true ac-
ceptance became 92.31%. This threshold strikes a good balance between usability and
security [87]; by using it, false acceptance (of zero-effort impostors) never occurs, while
true acceptance remains high. Following a similar procedure, we found that a thresh-
old of 0.90 achieved a reasonable tradeoff between security and usability for VGG143;
the true acceptance rate became 92.01% and the false acceptance rate became 4e−3.
Attempting to decrease the false acceptance rate to 0 reduced the true acceptance rate
to 41.42%, making the face-recognition system unusable.

Using thresholds changes the definition of successful impersonation: to successfully
impersonate the target t, the probability assigned to ct must exceed the threshold.
Evaluating the previous impersonation attempts under this definition, we found that
success rates generally decreased but remained high enough for the impersonations to
be considered a real threat (see Table 3.2). For example, SB’s success rate when at-
tempting to fool VGG10 and impersonate SC decreased from 88.00% without threshold
to 75.00% when using a threshold.
Time Complexity The DNNs we use in this work are large, e.g., the number of
connections in VGG10, the smallest DNN, is about 3.86e8. Thus, the main overhead
when solving the optimization problem via GD is computing the derivatives of the
DNNs with respect to the input images. For NI images used in the optimizations and
NC connections in the DNN, the time complexity of each GD iteration is O(NI ∗NC).
In practice, when using about 30 images, one iteration of GD on a 2015 MacBook
Pro (equipped with 16GB of memory and a 2.2GHz Intel i7 CPU) takes about 52.72

3Similarly to dodging, SC required larger frames to impersonate the target.

3.4 Extension to Black-box Models 26

seconds. Hence, running the optimization up to 300 iterations may take about 4.39
hours.

3.4 Extension to Black-box Models
So far we have examined attacks in a white-box setting, where the adversary has access
to the model she is trying to deceive. In this section we demonstrate how similar attacks
can be applied in a black-box scenario. In such a scenario, the adversary would typically
have access only to an oracle O which outputs a result for a given input and allows
a limited number of queries. The threat model we consider here is one in which the
adversary has access only to the oracle.

We next briefly describe a commercial face-recognition system that we use in our
experiments (Sec. 3.4.1), and then describe and evaluate preliminary attempts to carry
out impersonation attacks in a black-box setting (Sec. 3.4.2–3.4.3).

3.4.1 Face++: A Commercial Face-Recognition System

Face++ is a cross-platform commercial state-of-the-art face-recognition system that
is widely used by applications for facial recognition, detection, tracking, and analy-
sis [235]. It has been shown to achieve accuracy over 97.3% on LFW [58]. Face++
allows users to upload training images and labels and trains a face-recognition system
that can be queried by applications. Given an image, the output from Face++ is the top
three most probable classes of the image along with their confidence scores. Face++ is
marketed as “face recognition in the cloud.” Users have no access to the internals of the
training process and the model used, nor even to a precise explanation of the meaning
of the confidence scores. Face++ is rate-limited to 50,000 free queries per month per
user.

To train the Face++ model, we used the same training data used for VGG10 in
Sec. 3.2.1 to create a 10-class face-recognition system.

3.4.2 Impersonation Attacks on Face++

The goal of our black-box attack is for an adversary to alter an image to which she has
access so that it is misclassified. We attempted dodging attacks with randomly colored
glasses and found that it worked immediately for several images. Therefore, in this
section we focus on the problem of impersonation from a given source to a target . We
treat Face++ as an example black-box face-recognition system, with its query function
modeled as the oracle O(x). The oracle returns candidates , an ordered list of three
classes numbered from 1 to 3 in decreasing order of confidence.

Our algorithm for attacking Face++ uses particle swarm optimization (PSO) [52] as
a subroutine. We begin by summarizing this technique.

Particle Swarm Optimization (PSO) Particle swarm optimization is a heuristic
and stochastic algorithm for finding solutions to optimization problems by mimicking
the behavior of a swarm of birds [52]. It iterates on a set of candidate solutions, called
particles, and collectively called a seed, that it updates based on the evaluation of an

3.4 Extension to Black-box Models 27

objective function. Each particle is a candidate solution and occupies a position in the
solution space. The value of a particle is the result of evaluating the objective function
on that particle’s position in the solution space. In each iteration, each particle is
updated by adding a velocity to its position. The velocity is a weighted and randomized
linear combination of the distance between (1) the current position of the particle and
its best position thus far (Pbest) and (2) the current position of the particle and the
best position taken by any particle thus far (Gbest), where “best” indicates that the
objective function evaluates to the smallest value. Once a termination criterion is met,
Gbest should hold the solution for a local minimum.

We choose this over other black-box optimization methods such as surrogate mod-
els [21]—which require that the adversary has the training data and enough compu-
tational resources to train an effective surrogate—and genetic algorithms [17]—which
though similar to PSO are much less computationally efficient [74, 168].

Since Face++ only returns the top three classes, PSO can make progress if target is
in the top three results reported for any particle in the first iteration. However, when
target is not in the top three for any set of initial solutions, the algorithm does not get
any feedback on appropriate directions. To address this, we implement an algorithm
we call recursive impersonation (Alg. 1). The goal of the algorithm to is reach the
final target by attempting multiple intermediate impersonations on varying targets in
successive runs of PSO. This is done in the hope that attempting an intermediate
impersonation will move the swarm away from the previous solution space and toward
candidate solutions that may result in the target being returned in the top three classes.
If the target does not initially appear in the candidate list that results from querying
the oracle with the original image, we select the class with the second highest confidence
to be the intermediate target. On subsequent PSO runs, the most commonly occurring
class labels that have not yet been used as targets become the new intermediate targets.

In our implementation, we modify the PSO subroutine to globally keep track of
all the particles used in the last iteration of PSO as well as all particles throughout
all PSO iterations for which invoking the oracle resulted in target appearing in the
candidate list. The invoking algorithm has access to these saved particles and uses
them in order to select a new intermediate impersonation target or to provide a seed
for the next impersonation attempt.

On each run, PSO aims to minimize an objective function defined by f(x + r),
where r is the perturbation applied to the image x. f(·) is computed based on the
output from the oracle O. The value of this objective at every particle is then used to
move the swarm in a new direction during the next iteration of PSO. We experimented
with several definitions of f(·). In practice, we found the following to be the most
effective:

f(x) =

{
rank · scoretop

scoretarget
if target ∈ candidates

maxObjective if target /∈ candidates

The function uses the input x to query O for the candidates . The variable score top
denotes the confidence score of the top-ranked item in candidates . If the target is in
candidates then score target is its confidence score and rank its rank in candidates . When
target is successfully impersonated, f(·) receives its minimal value of 1. If target is not
in the top three candidates, the function should evaluate to maxObjective, which we

3.4 Extension to Black-box Models 28

set to be a sufficiently large value to indicate a result far less optimal than Pbest or
Gbest .

Algorithm 1: Recursive Impersonation
1 Initialize epoch = 0, numParticles, epochsmax and seed .
2 Set candidates = O(imageoriginal).
3 if target ∈ candidates then targetcurrent = target ;
4 else targetcurrent = 2nd most probable class of candidates;
5 while epoch ≤ epochmax do
6 Run PSO subroutine with targetcurrent and seed .
7 if any particle impersonated target during PSO then
8 solution was found. exit.
9 else if target ∈ candidates of any query during PSO then

10 targetcurrent = target . Clear seed .
11 seed ⊇ particles that produced this candidate from the current PSO run.
12 else
13 if new candidate emerges from current PSO run then
14 targetcurrent = new candidate. Clear seed.
15 seed ⊇ particles that produced this candidate from the current PSO run.
16 else
17 no solution was found. exit.
18 epoch = epoch + 1

3.4.3 Results

Experiment Description To evaluate our methodology, we picked four {source, target}
pairs from among the subjects on which Face++ was trained. Two of the pairs were
chosen at random. The other two pairs were chosen as challenging impersonations by
making sure that the target was not one of the top three classes reported by Face++
for the source image. To make the attack realistic in terms of possibility of physical
realization, we restricted the perturbations to a pair of glasses. We did not attempt to
physically realize the attack, however.

We ran our experiments with 25 particles. The particles were initialized by ran-
domly generating 25 distinct pairs of glasses with smooth color variations. We ran the
algorithm for a maximum of 15 epochs or attempts, and set the iteration limit of PSO
to 50 and maxObjective to 50. We also assigned weights in computing the velocity such
that a higher weight was given to Gbest than Pbest .

Experiment Results The results from the experiments are shown in Table 3.3. All
attempted impersonations succeeded. Noteworthy is the low number of queries needed
for the attacks, which shows that rate-limiting access to services will not always stop
an online attack.

3.5 Extension to Face Detection 29

Source Target Success rate Avg. # queries
Clive Owen SA 100% 109

Drew Barrymore SB 100% 134
SD SC 100% 25
SD Clive Owen 100% 59

Table 3.3: Results of four attempted impersonation attacks, each run three times.
SA–SC are the same subjects from Sec. 3.3.2. SD is a 33-year-old Asian female. Each
attempt had a different (randomized) initial seed and velocities. Number of queries is
the total number of queries made of the oracle in the PSO iterations.

3.5 Extension to Face Detection
In this section, we show how to generalize the basic approach presented in Sec. 3.2.2 to
achieve invisibility to facial biometric systems. In an invisibility attack, an adversary
seeks to trick an ML system not into misclassifying one person as another, but into
simply failing to detect the presence of a person.

We examine this category of attacks for two reasons. First, most ML systems for
identifying faces have two phases: detecting the presence of a face and then identifying
the detected face. The detection phase is typically less closely tied to training data than
the recognition phase. Hence, techniques to circumvent detection have the potential
to apply more broadly across multiple systems.

Second, avoiding detection corresponds naturally to one type of motivation—the
desire to achieve privacy. In seeking to achieve privacy, a person may specifically want
to avoid causing culpability to be placed on another person. Similarly, a mislabeling
of a face might be more likely to arouse suspicion or alert authorities than would the
failure to notice the presence of a face at all, as might occur at an airport security
checkpoint where faces detected by face-detection systems are confirmed against face
images of passengers expected to travel, or faces of people wanted by the authorities.

In this section, we show how to perform invisibility attacks while attempting to
maintain plausible deniability through the use of facial accessories. We defer the ex-
amination of the physical realizability of these attacks to future work.

3.5.1 The Viola-Jones Face Detector

The Viola-Jones (VJ) face detector was designed with efficiency and accuracy in mi-
nd [213]. The key idea to achieve both goals is to use a cascade of classifiers that have
an ascending order of complexity. Each classifier is trained to detect the majority of
the positive instances (presence of a face) and reject a large number of the negative
instances. To detect an object in an image, several sub-windows are taken from the
image and are evaluated by the detector. To be detected as a positive example, the
sub-window needs to be classified as a positive example by all the classifiers in the
cascade. On the other hand, being rejected by one classifier in the cascade results
in classifying a sub-window as a negative example. Sub-windows that are rejected by
simple classifiers are not further evaluated by the more sophisticated classifiers.

3.5 Extension to Face Detection 30

A classifier in the cascade is composed of a combination of weak classifiers. A weak
classifier i is a simple classifier that outputs one of two possible values, ãi or âi, based
on one feature value, fi(·), and a threshold bi. Given a classifier that is composed of C
weak classifiers, its decision function is defined as:

Classify(x) =

(C∑
i=1

(
(ãi − âi)(fi(x) > bi) + âi

))
> τ

where τ is the passing threshold of the classifier, x is the sub-window, and fi(x) > bi
evaluates to 1 if true and 0 otherwise.

As explained above, the VJ detector rejects a sub-window in case one of its clas-
sifiers rejects it. Thus, to evade detection it is sufficient to fool one cascade stage.
Since the trained VJ is an open source (i.e., white-box) classifier [88], to find a minimal
perturbation that can be used for evasion, we could potentially adapt and utilize the
solution proposed by Szegedy et al. [206]. However, to solve the optimization problem,
we need the classification function to be differentiable, which Classify(x) is not. There-
fore, we use the sigmoid function, sig (as is often done in ML [175]), and formulate
the optimization problem as:

argmin
r

((C∑
i=1

(
(ãi − âi) · sig(k · (fi(x+ r)− bi)) + âi

)
− τ
)

+ c|r|

)
(3.1)

where k is a positive real number that can be tuned to control the precision of the
approximation. With this approximation, we can perform GD to solve the optimization
problem.

3.5.2 Experiment Results

By generating a perturbation to evade a specific stage of the detector via the above
technique, we are able to learn how to tweak pixel intensities in specific regions to
successfully evade the whole cascade. To test this approach, we randomly selected 20
frontal images from the PubFig [111] face dataset, and tested whether each could be
permuted to evade detection by fooling the first classifier in the cascade. We generated
perturbed images as follows: we limited the perturbation to the area of the face, set c to
0.015 (as we found this to yield smaller perturbations in practice), and then performed
line search on k to find the minimal perturbation necessary to evade the classifier, using
a Limited BFGS [150] solver to solve the optimization (Eqn. 3.1).

For 19 out of the 20 images it was possible to evade detection. For the images that
achieved evasion, the mean perturbation—the aggregate change in the value of the
R, G, and B channels—of a pixel that overlays the face was 16.06 (standard deviation
6.35), which is relatively high and noticeable. As Fig. 3.6 shows, in some cases even the
minimal perturbation necessary to evade detection required making changes to faces
that could draw increased attention.

In another version of the attack, in which we sought to increase both the success
rate and plausible deniability, we first added facial accessories specifically selected for
their colors and contrast to the image; we then perturbed the image as in the previous

3.6 Discussion 31

Figure 3.6: An example of an invisibility attack. Left: original image of actor Kiefer
Sutherland. Middle: Invisibility by perturbing pixels that overlay the face. Right:
Invisibility with the use of accessories.

attack. The accessories we used were: eyeglasses, a blond wig, bright eye contacts,
eye blacks, and a winter hat. With this approach, it was possible to evade detection
for all 20 face images. In addition, the amount by which each pixel needed to be
perturbed dropped remarkably, thus contributing to plausible deniability. The mean
perturbation of a pixel to avoid detection was 3.01 (standard deviation 2.12). An
illustration of evasion attacks on VJ that utilize accessories is shown in Fig. 3.6.

3.6 Discussion
Here we discuss the implications and the limitations of the work presented in this
chapter.

3.6.1 Implications

As our reliance on technology increases, we sometimes forget that it can fail. In some
cases, failures may be devastating and risk lives [170]. The work presented in this
chapter, as well as prior work on practical attacks on ML systems (e.g., [120, 200]),
show that the introduction of ML to systems, while bringing benefits, increases the
attack surface of these systems. Therefore, we should be careful when integrating ML
algorithms into safety- or security-critical systems.

In this chapter we show that face-recognition systems are vulnerable to a new type
of attacks: inconspicuous and physically realizable attacks that lead to dodging or
impersonation. Such attacks can be especially pernicious as they can resist cursory
investigation (at the least) and can provide attackers with plausible deniability. While
we demonstrate the efficacy of these attacks on fooling one kind of DNN architecture
in the face-recognition domains, similar approaches can apply to other domains. In
fact, the techniques demonstrated in this chapter serve as the basis to practical attacks
in the street-sign and object-recognition domains (e.g., [11, 57]).

3.6.2 Limitations

The variations in imaging conditions that we investigate in this chapter are narrower
than can be encountered in practice. For instance, we controlled lighting by taking
images in a room that does not have external windows. These conditions are applicable
to some practical cases (e.g., a face-recognition system deployed within a building).

3.7 Conclusion 32

However, other practical scenarios are more challenging, and effective attacks may
have to be tolerant to a larger range of imaging conditions. For example, an attacker
may not be able to control the lighting or her distance from the camera when a face-
recognition system is deployed in the street for surveillance purposes. In Chap. 5, we
show that physically realized attacks can be effective under a broader set of imaging
conditions than is considered in this chapter (e.g., even when varying lighting conditions
markedly).

In addition, the notion of inconspicuousness is subjective, and the only way to
measure it adequately would include performing human-subject studies. While we do
not present a user study in this chapter, the user study presented in Chap. 5 shows that
the attack presented in this chapter sometimes produces eyeglasses that are deemed
more realistic by users than actual eyeglasses collected from the web.

3.7 Conclusion
In this chapter, we demonstrated techniques for generating accessories in the form
of eyeglass frames that, when printed and worn, can effectively fool state-of-the-art
face-recognition systems. Our research builds on research in fooling ML classifiers
by perturbing inputs in an adversarial way, but does so with attention to two novel
goals: the perturbations must be physically realizable and inconspicuous. We showed
that our eyeglass frames enabled subjects to both dodge recognition and to outright
impersonate other individuals. We believe that our demonstration of techniques to
realize these goals through printed eyeglass frames is both novel and important, and
should inform deliberations on the extent to which ML can be trusted in adversarial
settings. Finally, we extended our work in two additional directions, first, to so-called
black-box face-recognition systems that can be queried but for which the internals are
not known, and, second, to defeat state-of-the-art face detection systems.

Chapter 4

Functionality-Preserving Attacks
Against Malware Detection

4.1 Introduction
While the majority of work on evasion attacks focuses on the image domain, such at-
tacks are a potential threat to malware detection—a fundamental computer-security
problem that is increasingly addressed with the help of ML models (e.g., [7, 107, 165,
207]). In this domain, attackers are interested in altering programs to mislead ML-
based malware detectors into misclassifying malicious programs as benign, or vice versa.
In doing so, attackers face a non-trivial constraint: in addition to misleading the mal-
ware detectors, any alteration of a program must not change its original, intended,
functionality. For example, a keylogger altered to evade being detected as malware
should still carry out its intended function, including invoking necessary APIs, access-
ing sensitive files, and connecting to attackers’ servers. This constraint is arguably
more challenging than ones imposed by other domains (e.g., evading image recognition
while making changes imperceptible to humans [206]) as it is less amenable to being
encoded into traditional frameworks for generating adversarial examples, and most
changes to byte values are likely to break a program’s syntax or semantics. In this
chapter, we show that the constraint of preserving functionality can be incorporated
into the process of generating adversarial examples to fool state-of-the-art deep neural
networks (DNNs) for malware detection [107, 165].

Roughly speaking, malware-detection methods can be categorized as dynamic or
static [20, 207]. Dynamic methods (e.g., [84]) execute programs to learn behavioral
features that can be used for classification. In contrast, static methods (e.g., [7, 107])
classify programs using features that can be computed without execution. While po-
tentially more accurate, dynamic methods are more computationally expensive, and,
consequently, less ubiquitously deployed [20, 100]. Therefore, we focus on static meth-
ods.

Several attacks have been proposed to generate adversarial examples against DNNs
for static malware detection [49, 101, 108, 205]. To fool the DNNs while preserving
functionality, these attacks introduce adversarially crafted byte values in regions that
do not affect execution (e.g., at the end of programs or between sections). These

33

4.2 Technical Approach 34

attacks can be defended against by masking out or removing the added content before
classification (e.g., [110]); we confirm this empirically.

In this chapter we show how binary-diversification tools—tools for transforming
programs at the binary level to create diverse variants of the same program—that were
originally proposed to defend against code-reuse attacks [105, 158] can be leveraged to
evade malware-detection DNNs. While these tools preserve the functionality of pro-
grams after transformation by design, they are ineffective at evading malware detection
when applied naïvely (e.g., functionality-preserving randomization). To address this,
we propose optimization algorithms to guide the transformations of binaries to fool
malware-detection DNNs, both in settings where attackers have access to the DNNs’
parameters (i.e., white-box) and ones where they have no access (i.e., black-box). The
algorithms we propose can produce program variants that often fool DNNs in 100% of
evasion attempts. Perhaps most worryingly, we find that the attack samples produced
by the algorithms are also often effective at evading commercial malware detectors (in
some cases with success rates as high as 85%). Because our attacks transform func-
tional parts of programs, they are particularly difficult to defend against, especially
when augmented with methods to deter static and dynamic analyses. We explore po-
tential mitigations to the attacks that we propose (e.g., via preprocessing programs
to normalize them before classification [6, 40, 216]), but conclude that attackers may
adapt to circumvent these mitigations. This leads us to advocate against relying only on
ML-based techniques for malware detection, as is becoming increasingly common [47].

In a nutshell, the contributions of this chapter are as follows:

• We propose a novel functionality-preserving attack against DNNs for malware
detection from raw bytes (Sec. 4.2). The attack uses binary-diversification tech-
niques in a novel way to prevent defenses applicable to prior attacks, and is
applicable both in white-box and black-box settings.

• We evaluate and demonstrate the effectiveness of the proposed attack in different
settings, including against commercial anti-viruses (Sec. 4.3). We also compare
our attack with prior attacks, and show that it achieves comparable or higher
success rates, while being more challenging to defend against.

• We explore the effectiveness of prior and new defenses against our proposed at-
tack (Sec. 4.4). While several defenses seem promising to defend against specific
variants of the attack, we warn against the risk of adaptive attackers.

4.2 Technical Approach
This section discusses the technical approach behind our attack. Before delving into
the details, we briefly describe the malware-detection DNNs that we study, provide
background on binary-diversification tools that serve as a building block of our attacks,
and lay down the threat model.

4.2 Technical Approach 35

4.2.1 DNNs for Malware Detection

In this chapter, we mainly study attacks targeting two DNN architectures for detect-
ing malware from the raw bytes of Windows binaries (i.e., executables in Portable
Executable format) [107, 165]. The main appeal of these DNNs is that they achieve
state-of-the-art performance using automatically learned features, instead of manually
crafted features that require tedious human effort (e.g., [7, 86, 102]). In fact, due to
their desirable properties, computer-security companies use DNNs similar to the ones
that we study (i.e., ones that operate on raw bytes and use a convolution architectures)
for malware detection [45]. As these DNNs classify binaries without executing them,
they fall under the category of static detection methods [20, 207].

The DNNs proposed by prior work follow standard convolutional architectures sim-
ilar to the ones used for image classification [107, 165]. Yet, in contrast to image-based
classifiers that classify inputs from continuous domains, the malware-detection DNNs
classify inputs from discrete domains—byte values of binaries. To this end, the DNNs
were designed with initial embedding layers that map each byte in the input to a vec-
tor in R8. Once the input is represented in a real vector space after the embedding,
standard convolutional and non-linear operations are performed by subsequent layers.

Fleshman et al. proposed to make malware-detection DNNs more robust by con-
straining the parameter weights in the last layer to non-negative values [62]. Their
approach aims to prevent attackers from introducing additional features to malware
to decrease its likelihood of being classified correctly. While this rationale holds for
single-layer neural networks (i.e., linear classifiers), DNNs with multiple layers consti-
tute complex functions where the addition of features at the input may correspond to
the deletion of features in deep layers. As a result of the misalignment between the
threat model and the defense, we found that DNNs trained with this defense are as
vulnerable to prior attacks [108] as undefended DNNs. Therefore, we do not consider
Fleshman et al.’s defense for the remainder of the chapter.

4.2.2 Binary Diversification

Software diversification is a technique developed to produce diverse binary versions of
programs, all with the same functionality, to resist different kinds of attacks, such as
memory-corruption, code-injection, and code-reuse attacks [114]. Diversification can be
performed at the source-code level (via the development of multiple implementations),
at compilation time (e.g., using a multicompiler), or after compilation (by rewriting
and randomizing programs’ binaries). In this chapter, we build on diversification tech-
niques after compilation, at the binary level, as they have wider applicability (e.g.,
self-spreading malware can use them to evade detection without having access to the
source code [146]), and are more efficient (producing the binary after a transforma-
tion does not require recompilation). Nevertheless, we expect that this work can be
extended to work with different diversification methods.

There is a large body of work on binary rewriting from the programming-languages,
computer-architecture, and computer-security communities (e.g., [72, 104, 105, 133,
158, 181, 218]). Some of the rewriting methods aim to achieve higher-performing code
via relatively expensive search through the space of equivalent programs [133, 181].

4.2 Technical Approach 36

Other methods significantly increase the size of binaries, or may leave a conspicuous
sign that rewriting took place [72, 218]. We build on binary-randomization tools that
have little-to-no effect on the size or run time of the randomized binaries, thus helping
our attacks remain stealthy [105, 158].

4.2.3 Threat Model

We assume that the attacker has white-box or black-box access to DNNs for malware
detection. In the white-box setting, the attacker has access to the DNNs’ architectures
and weights and is able to efficiently compute the gradients of loss functions with
respect to the DNNs’ input via forward and backward passes. On the other hand, the
attacker in the black-box setting may only query the model with a binary and receive
the probability estimate that the binary is malicious.

As is usually the case for inference-time evasion attacks, the weights of the DNNs
are fixed and cannot be controlled by the attacker (e.g., by poisoning the training data).
The attacker uses binary rewriting methods that are challenging to undo to manipulate
the raw bytes of binaries and cause misclassification while keeping functionality intact.
Attacks may seek to cause malware to be misclassified as benign or benign binaries to be
misclassified as malware. The former type of attack may cause malware to circumvent
defenses and be executed on a victim’s machine. The latter may be useful to induce
false positives, which may lead users to turn off or ignore the defenses [76].

We also assume that the binaries are unpacked, as is often the case for static
malware-detection methods [20, 107]. Detecting packed binaries and unpacking them
are problems orthogonal to ours that have been addressed by other researchers (e.g., [20,
37, 210]). Nonetheless, adversaries may still use our attacks simultaneously with pack-
ing: As packed binaries are usually unpacked before being classified by static meth-
ods [20], adversaries can use our attacks to modify binaries before packing them so
that the binaries would be misclassified once unpacked.

As is standard for ML-based malware detection from raw bytes in particular, and
for classification of inputs from discrete domains in general (e.g., [115]), we assume that
the first layer of the DNN is an embedding layer. This layer maps each discrete token
from the input space to a vector of real numbers via a function E(·). When computing
the DNN’s output F(x) on an input binary x, one first computes the embeddings and
feeds them to the subsequent layers. Thus, if we denote the composition of the layers
following the embedding by H(·), then F(x) = H(E(x)). While the DNNs we attack
contain embedding layers, our attacks conceptually apply to DNNs that do not contain
such layers. Specifically, for a DNN function F(x) = `n−1(. . . `i+1(`i(. . . `0(x) . . .)) . . .)
for which the errors can be propagated back to the (i+ 1)th layer, the attack presented
below can be executed by defining E(x) = `i(. . . `0(x) . . .).

4.2.4 Functionality-Preserving Attack

The attack we propose iteratively transforms a given binary x of class y (y=0 for
benign binaries, and y=1 for malware) until misclassification occurs or a maximum
number of iterations is reached. To keep the binary’s functionality intact, the types of
transformations are limited to ones that preserve functionality. (The transformation

4.2 Technical Approach 37

types that we consider in this work are detailed below.) In each iteration, the attack
picks a transformation type at random for each function, and attempts to transform
the function using it. For instance, if the transformation type can replace certain
instructions within a function with functionally equivalent ones, a random subset of
those instructions will be selected for replacement. The attempted transformation is
applied only if the DNN becomes more likely to misclassify the binary.

Alg. 2 presents the pseudocode of the attack in the white-box setting. The algorithm
starts by transforming all the functions in the binary in an undirected way. Namely,
for each function in the binary, a transformation type is selected at random from the
set of available transformations. The transformation is then applied to that function.
When there are multiple ways to apply the transformation to the function, one is
chosen at random. The algorithm then proceeds to further transform the binary for
up to niters iterations. Each iteration starts by computing the embedding of the
binary to a vector space, ê, and the gradient, g, of the DNN’s loss function, LossF ,
with respect to the embedding (lines 4–5). The loss function we use is the Carlini
and Wagner loss function (Losscw) presented in Chap. 2. Ideally, to move the binary
closer to misclassification, we would manipulate the binary so that the difference of
its embedding from ê + αg (for some scaling factor α) is minimized (see prior work
for examples [101, 108]). However, if applied without proper care, such manipulation
would likely change the functionality of the binary or cause it to become ill-formed.
Instead, we transform the binary via functionality-preserving transformations. As the
transformation types are stochastic and may have many possible outputs (in some cases,
more than can be feasibly enumerated), we cannot estimate their impact on the binary
a priori. Therefore, we transform each function, f , by attempting to apply a (randomly
picked) functionality-preserving transformation type at random (once per iteration);
we apply the transformation only if it shifts the embedding in a direction similar to g
(lines 6–14). More concretely, if gf is the gradient with respect to the embedding of
the bytes corresponding to f , and δf is the difference between the embedding of f ’s
bytes after the attempted transformation and its bytes before, then the transformation
is applied only if the cosine similarity (or, equivalently, the dot product) between gf
and δf is positive. Other optimization methods (e.g., genetic programming [227]) and
similarity measures (e.g., similarity in the Euclidean space) that we tested did not
perform as well.

If the input were continuous, it would be possible to perform the same attack in a
black-box setting after estimating the gradients by querying the model (e.g., [85]). In
our case, however, it is not possible to estimate the gradients of the loss with respect to
the input, as the input is discrete. Therefore, the black-box attack we propose follows a
general hill-climbing approach (e.g., [200]) rather than gradient ascent. The black-box
attack is conceptually similar to the white-box one, and differs only in the condition
checking whether to apply attempted transformations: Whereas the white-box attack
uses gradient-related information to decide whether to apply a transformation, the
black-box attack queries the model after attempting to transform a function, and ac-
cepts the transformation only if the probability of the target class increases.

Transformation Types We consider two families of transformation types [105, 158],
as well as their combination. For the first family, we adopt and extend the transforma-

4.2 Technical Approach 38

Algorithm 2: White-box attack against malware detection.
Input : F = H(E(·)), LossF , x, y, niters
Output: x̂

1 i← 0;
2 x̂← RandomizeAll(x);
3 while F(x̂) = y and i < niters do
4 ê← E(x̂);
5 g ← ∂LossF (x̂,y)

∂ê ;
6 for f ∈ x̂ do
7 o← RandomTransformationType();
8 x̃← RandomizeFunction(x̂, f, o);
9 ẽ← E(x̃);

10 δf = ẽf − êf ;
11 if gf · δf > 0 then
12 x̂← x̃;
13 i← i+ 1;
14 return x̂;

tion types proposed in the in-place randomization (IPR) work of Pappas et al. [158].
Given a binary to randomize, Pappas et al. proposed to disassemble it and identify
functions and basic blocks, statically perform four types of transformations that pre-
serve the functionality of the code, and then update the binary accordingly from the
modified assembly code. The four transformation types considered are: 1) to replace
instructions with equivalent ones of the same length (e.g., sub eax,4→ add eax,-4);
2) to reassign registers within functions or a set of basic blocks (e.g., swap all instances
of ebx and ecx) if this does not affect code that follows; 3) to reorder instructions,
using a dependence graph to ensure that no instruction appears before another one
it depends on; and 4) to change the order in which register values are pushed to and
popped from the stack to save them across function calls.

To maintain the semantics of the code, the disassembly and transformations are
performed conservatively (e.g., speculative disassembly, a disassembly technique that
has a relatively high likelihood of misidentifying code, is avoided). IPR does not alter
binaries’ sizes and has no measurable effect on their run time [158].

The original implementation of Pappas et al. could not be used to evade malware
detection due to several limitations, including ones preventing it from producing the
majority of functionally equivalent binary variants that are conceptually achievable un-
der the four transformation types. Thus, we extend and improve the implementation
in various ways. First, we enable the transformations to compose. In other words, un-
like Pappas et al.’s implementation, our implementation allows us to iteratively apply
different transformation types to the same function. Second, we apply transformations
more conservatively to ensure that the functionality of the binaries is preserved (e.g.,
by not replacing add and sub instructions if they are followed by instructions that
read the flags register). Third, compared to the previous implementation, our imple-
mentation can handle a larger number of instructions and additional function-calling
conventions. In particular, our implementation can rewrite binaries containing addi-

4.2 Technical Approach 39

tional instructions (e.g., shrd, shld, ccmove) as well as less common calling conventions
(e.g., nonstandard returns via increment of esp followed by a jmp instruction) without
impacting the binaries’ functionality. Last, we fix bugs in the original implementation
(e.g., incorrect checks for writes to memory after reads). Fig. 4.1 shows an example of
transforming code using IPR.

push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+4]
add ebx, 0x10
mov edx, [ebp+8]
mov [edx], ebx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d04)
(83c310)
(8b5508)
(891a)
(5a)
(5b)
(5d)

(a) Original

push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+4]
sub ebx, -0x10
mov edx, [ebp+8]
mov [edx], ebx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d04)
(83ebf0)
(8b5508)
(891a)
(5a)
(5b)
(5d)

(b) Equivalent instructions

push ebp
mov ebp, esp
push ebx
push edx
mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5504)
(83eaf0)
(8b5d08)
(8913)
(5a)
(5b)
(5d)

(c) Register reassignment
push ebp
mov ebp, esp
push ebx
push edx
mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx
pop edx
pop ebx
pop ebp

(55)
(89e5)
(53)
(52)
(8b5d08)
(8b5504)
(83eaf0)
(8913)
(5a)
(5b)
(5d)

(d) Instruction reordering

push ebp
mov ebp, esp
push edx
push ebx
mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx
pop ebx
pop edx
pop ebp

(55)
(89e5)
(52)
(53)
(8b5d08)
(8b5504)
(83eaf0)
(8913)
(5b)
(5a)
(5d)

(e) Register preservation

Figure 4.1: An illustration of IPR. We show how the original code (a) changes after
replacing instructions with equivalent ones (b), reassigning registers (c), reordering
instructions (d), and changing the order of instructions that save register values (e).
We provide the hex encoding of each instruction to its right. The affected instructions
are boldfaced and colored in red.

The second family of transformation types that we build on is based on code dis-
placement (Disp), proposed by Koo and Polychronakis [105]. Similarly to IPR, Disp
begins by conservatively disassembling the binary. The original idea of Disp is to move
code that can be leveraged as a gadget in code-reuse attacks to a new executable section
in order to break the gadget. The original code to be displaced has to be at least five
bytes in size so that it can be replaced with a jmp instruction that passes the control to
the displaced code. If the displaced code contains more than five bytes, the bytes after
the jmp are replaced with trap instructions that terminate the program; these would
be executed if a code-reuse attack is attempted. In addition, another jmp instruction
is appended immediately after the displaced code to pass the control back to the in-
struction that should follow. Of course, any displaced instruction that uses an address
relative to the instruction-pointer (i.e., IP) register is also updated to reflect the new
address after displacement. Disp has a minor effect on binaries’ sizes (∼2% increase
on average) and causes a small amount of run-time overhead (<1% on average) [105].

We extend Disp in two primary ways. First, we make it possible to displace any set
of consecutive instructions within the same basic block, not only ones that belong to

4.2 Technical Approach 40

1 S → Atom | S · S |
2 bswp r · S · bswp r |
3 xchg rh, rl · S · xchg rh, rl |
4 push r · Sr · pop r |
5 pushfd · Sef · popfd
6 Atom → Φ | nop | mov r, r
7 Sr → S | Sr · Sr | pushfd · Sef ,r · popfd
8 Sef → S | Sef · Sef |
9 arth r, v · Sef · invarth r, v |

10 push r · Sef ,r · pop r
11 Sef ,r → S | Sr | Sef | Sef ,r · Sef ,r |
12 arth r, v · Sef ,r |
13 logic r, v · Sef ,r

Figure 4.2: A context-free grammar for generating semantic nops. S is the starting
symbol, Φ is the empty string, the symbol arth indicates an arithmetic operation
(specifically, add, sub, adc, or sbb), invarth indicates its inverse, logic indicates a
logical operation (specifically, and, or, or xor), and r and v indicate a register and a
randomly chosen integer, respectively.

gadgets. Second, instead of replacing the original instructions with traps, we replace
them with semantic nops—sets of instructions that cumulatively do not affect the
memory or register values and have no side effects [39]. These semantic nops get
jumped to immediately after the displaced code is done executing. To create the
semantic nops, we use the context-free grammar described in Fig. 4.2. At a high-
level, a semantic nop can be an atomic instruction (e.g., nop), or recursively defined
as an invertible instruction that is followed by a semantic nop and then by the inverse
instruction (e.g., push eax followed by a semantic nop and then by pop eax), or as
two consecutive semantic nops. When the flags register’s value is saved (i.e., between
pushfd and popfd instructions), a semantic nop may contain instructions that affect
flags (e.g., add and then subtract a value from a register), and when a register’s value
is saved too (i.e., between push r and pop r), a semantic nop may contain instructions
that affect the register (e.g., decrement it by a random value). Using the grammar for
generating semantic nops, for example, one may generate a semantic nop that stores
the flags and ebx registers on the stack (pushfd; push ebx), performs an operation
that might affect both registers (e.g., add ebx, 0xff), and then restores the registers
(pop ebx; popfd).

When using Disp, our attacks start by displacing code up to a certain budget, to
ensure that the resulting binary’s size does not increase above a threshold (e.g., 1%
above the original size). We first divide the budget (expressed as the number of bytes
to be displaced) by the number of functions in the binary, and we attempt to displace
exactly that number of bytes per function. If multiple options exist for what code
in a function to displace, the code to be displaced is chosen at random. If a function
does not contain enough code to displace, then we attach semantic nops (occupying the
necessary number of bytes) after the displaced code to meet the per-function budget. In
the rare case that the function does not have any basic block larger than five bytes, we

4.2 Technical Approach 41

skip that function. Fig. 4.3 illustrates an example of displacement where semantic nops
are inserted to replace original code, as well as after the displaced code, to consume the
budget. Then, in each iteration of modifying the binary to cause it to be misclassified,
new semantic nops are chosen at random and used to replace the previously inserted
semantic nops if that moves the binary closer to misclassification.

...
0x4587:
0x458b:
0x458f:
...

...
add ax, 0x10
sub bx, 0x10
cmp ax, bx
...

...
(6683c010)
(6683eb10)
(6639d8)
...

(a) Original code

...
0x4587:
0x458c:
0x458f:
...

...
0x4800:
0x4804:
0x4808:
0x4805:
0x4806:
0x4807:
0x480a:
0x480b:
0x480d:
...

...
jmp 0x4800
mov cx, cx
cmp ax, bx
...

...
add ax, 0x10
sub bx, 0x10
nop
pushfd
push ebx
add ebx, 0x1a
pop ebx
popfd
jmp 0x458c
...

...
(e974020000)
(6689c9)
(6639d8)
...

...
(6683c010)
(6683eb10)
(90)
(9c)
(53)
(83c31a)
(5b)
(9d)
(e97afdffff)
...

(b) After Disp

Figure 4.3: An example of displacement. The two instructions staring at address
0x4587 in the original code (a) are displaced to to starting address 0x4800. The original
instructions are replaced with a jmp instruction and a semantic nop. To consume
the displacement budget, semantic nops are added immediately after the displaced
instructions and just before the jmp the passes the control back to the original code.
Semantic nops are shown in boldface and red.

Some of the semantic nops contain integer values that can be set arbitrarily (e.g.,
see line 12 of Fig. 4.2). In a white-box setting, the bytes of the binary that correspond
to these values can be set to perturb the embedding in the direction that is most similar
to the gradient. Namely, if an integer value in the semantic nop corresponds to the
ith byte in the binary, we set this ith byte to b ∈ {0, . . . , 255} such that the cosine
similarity between E(b) − E(x̂i) and gi is maximized. This process is repeated each
time a semantic nop is drawn to replace previous semantic nops in white-box attacks.

Prior work has suggested methods for detecting and removing semantic nops from
binaries [40]. Such methods might appear viable for defending against Disp-based
attacks, though as we discuss in Sec. 4.4, attackers can leverage various techniques to
evade semantic-nop detection and removal.

Limitations While our implementation extends prior implementations, it can still
be further improved. For instance, our implementation does not displace code that
has been displaced in early iterations. A more comprehensive implementation might

4.3 Evaluation 42

apply displacements recursively. Furthermore, the composability of IPR and Disp
transformations can be enhanced. Particularly, when applying both the Disp and
IPR transformations to a binary, both types of transformations affect the original
instructions of the binary. However, IPR does not affect the semantic nops that are
introduced by Disp. Although there remains room for improvement, we did not pursue
the remaining engineering endeavors because the attacks were successful despite the
shortcomings of the implementation.

Furthermore, similarly to the original Disp and IPR implementations, there are
no provable guarantees that our transformations preserve functionality. While our
empirical experiments in Sec. 4.3.6 showed that the I/O behavior of the binaries we
tested remained the same after the transformations, it may be possible to provably
guarantee that functionality is preserved by using techniques from superoptimization
(e.g., [181]), or by lifting binaries to an intermediate language where it would be more
feasible to show functional equivalence between binaries (e.g., [25]).

4.3 Evaluation
In this section, we provide a comprehensive evaluation of our attack. We begin by pro-
viding details about the DNNs and data used for evaluation. We then show that naïve,
random, transformations that are not guided via optimization do not lead to misclas-
sification. Subsequently, we provide an evaluation of variants of our attack under a
white-box setting, and compare with prior work. Then, we move to discuss evaluations
of our attack in the black-box setting, both against the DNNs and commercial anti-
viruses. We close the section with experiments to validate that the attacks preserve
functionality.

4.3.1 Datasets and Malware-Detection DNNs

To train malware-detection DNNs, we used malicious binaries from a publicly available
dataset that we augmented with benign binaries from standard software packages, as is
standard (e.g., [102, 108]). In particular, we used malware binaries from nine malware
families1 that were published as part of a malware-classification competition organized
by Microsoft [171]. This dataset contains raw binaries of malware samples targeting
Windows machines. As such, the binaries adhere to the Portable Executable format
(PE ; the standard format for .dll and .exe files) [95]. However, to maintain sterility
and prevent the binaries from executing, the curators removed their PE headers (which,
among others, contain the entry points of the code). In total, the dataset contains
21,741 binaries that were partitioned into training and test sets by the dataset curators.
We further partitioned the test set randomly into one group for validation (i.e., model
and hyperparameter tuning) and another for final testing. Table 4.1 lists the number
of binaries in the training, validation, and test sets.

Prior work [5, 107, 165] used larger malware datasets for training (in some cases
containing two orders of magnitude more samples than the Microsoft dataset). Unfor-
tunately, however, the raw binaries from prior work’s datasets are proprietary. Conse-

1Gatak, Kelihos v1, Kelihos v3, Lollipop, Obfuscator ACY, Ramnit, Simda, Tracur, and Vundo.

4.3 Evaluation 43

Group Train Val. Test

Benign 10,349 3,848 5,337
Malicious 10,868 5,257 5,616

Table 4.1: The number of benign and malicious binaries used to train, validate, and
test the DNNs.

quently, we resorted to using a publicly available dataset. Nonetheless, the DNNs that
we trained achieve comparable performance to those of prior work.

To collect benign binaries, we installed standard packages on a newly created 32-bit
Windows 7 virtual machine and gathered the PE binaries pertaining to these packages.
Specifically, we used the Ninite and Chocolatey2 package managers to install 179 pack-
ages. The packages that we installed included popular ones that are commonly used by
a variety of users (such as Chrome, Firefox, WinRAR, Spotify, . . .), as well as packages
that are likely to be used by specific user groups, such as developers (e.g., PyCharm),
academics (e.g., MiKTeX), and graphics designers (e.g., Gimp). This resulted in 19,534
binaries that we partitioned into training, validation, and test sets of comparable sizes
to those for malware (see Table 4.1). When partitioning, we placed binaries from the
same packages in the same partitions to ensure that the DNNs learned to tell apart
malicious and benign binaries rather to than to associate binaries of the same packages
with each other.

Using the malicious and benign samples, we trained two malware-detection DNNs.
Both DNNs receive binaries’ raw bytes as inputs and output the probability that the
binaries are malicious. The first DNN, proposed by Krčál et al. [107], receives inputs
up to 512 KB in size. We refer to it by AvastNet , in reference to the authors’ affiliation.
The second DNN, proposed by Raff et al. [165], receives inputs up to 2 MB in size. We
refer to this DNN by MalConv , as per the authors’ naming. Except for the batch-size
parameter, we used the same training parameters reported in the papers. We set the
batch size to 32 due to memory limitations. In addition, when using benign binaries for
training, we excluded the headers. This is both to remain consistent with the malicious
binaries (which do not include headers), but also to ensure that the DNNs would not
rely on header values that are easily manipulable for classification [49]. As the results
below demonstrate, excluding the header leads to DNNs that are more difficult to
evade.

The classification performance of the DNNs is reported in Table 4.2. Both DNNs
achieve test accuracy of about 99%. Even when restricting the false positive rates
(FPRs) conservatively to 0.1% (as is often done by anti-virus vendors [107]), the true
positive rates (TPRs) remain as high as 80–89% (i.e., 80–89% of malicious binaries are
detected). The performance results that we computed are superior to the ones reported
in the original papers both for classification from raw bytes and from manually crafted
features [107, 165]. We believe the reason to be that our dataset was restricted to nine

2https://ninite.com/ and https://chocolatey.org/

https://ninite.com/
https://chocolatey.org/

4.3 Evaluation 44

Accuracy TPR @
DNN Train Val. Test 0.1% FPR

AvastNet 99.23% 98.29% 98.92% 80.28%
MalConv 99.96% 98.33% 99.15% 88.73%

Table 4.2: The DNNs’ performance. We report the accuracies on the different data
partitions, as well as the TPR at the operating point where the FPR equals 0.1%.

malware families, and expect the performance to slightly decrease when incorporating
additional malware families.

In addition to the two DNNs that we trained, we evaluated the attacks using a pub-
licly available DNN that was trained by Anderson and Roth [5]. We refer to this DNN
by Endgame, in reference to the authors’ affiliation. Endgame has a similar architec-
ture to MalConv . The salient differences are that: 1) Endgame’s input dimensionality
is 1 MB (compared to 2 MB for MalConv); and 2) Endgame uses the PE header for
classification. On a dataset separate from ours that was created by a computer-security
company, Endgame achieved about 92% TPR when the FPR was restricted to 0.1% [5].

To evaluate attacks against the DNNs, we selected binaries according to three cri-
teria. First, the binaries had to be unpacked. To this end, we used standard packer
detectors (specifically, Packerid [184] and Yara [214]) and deemed binaries as unpacked
only if none of the detectors exhibited a positive detection. This method is similar to
the one followed by Biondi et al. [20].3 While the data used to train and evaluate the
performance of the DNNs included packed binaries (we could not exclude potentially
packed binaries from the Microsoft dataset due to missing headers), the high accuracy
of the DNNs on the test samples suggests that the DNNs’ performance was not im-
pacted by (lack of) packing. Second, the binaries had to be classified correctly and
with high confidence by the DNNs that we trained. In particular, malicious (resp.,
benign) binaries had to be classified as malicious (resp., benign), and the estimated
probability that they are malicious had to be above (resp., below) the threshold where
the FPR (resp., false negative rate, FNR) is 0.1%. Consequently, our evaluation of the
attacks’ success is conservative: the attacks would be more successful for binaries that
are initially classified correctly, but not with high confidence. Third, the binaries’ sizes
had to be smaller than the DNNs’ input dimensionality. While the DNNs can classify
binaries whose size is larger than the input dimensionality (as can be seen from the
high classification accuracy on the validation and test sets), we avoided large binaries
as a means to prevent evasion by displacing malicious code outside the input range of
the DNNs.

Using these criteria, we selected 99 benign binaries from the test set to evaluate
the attacks against each of the three DNNs. Leading malware detection to misclassify
these benign samples can harm users’ trust in the defense [76]. Unfortunately, we
were unable to use the malicious binaries from the Microsoft dataset to evaluate our
attacks, as they lack the PE headers, and so they cannot be disassembled as necessary

3Biondi et al. used three packer-detection tools instead of two. Unfortunately, we were unable to
get access to one of the proprietary tools.

4.3 Evaluation 45

Group AvastNet MalConv Endgame

Benign 99 99 99
Malicious 72 95 86

Table 4.3: The number of benign and malicious binaries used to test our attacks
against the three DNNs.

for the IPR and Disp transformations. To this end, we used VirusShare [169]—an
online repository of malware samples—to collect malicious binaries belonging to the
nine families that are present in the Microsoft dataset (as indicated by the labels that
commercial anti-viruses assigned the samples). Following this approach, we collected
a variable number of binaries that were unseen in training to test the attacks against
each one of the DNNs, as specified in Table 4.3. The total number of samples the we
collected to evaluate the attacks is comparable to that used in prior work on evading
malware detection [101, 108, 200, 205].

4.3.2 Randomly Applied Transformations

We first evaluated whether naïvely transforming binaries at random would lead to
evading the DNNs. To do so, for each binary that we used to evaluate the attacks
we created 200 variants using the IPR and Disp transformations and classified them
using the DNNs. If any of the variants was misclassified by a DNN, we would consider
the evasion attempt successful. We set Disp to increase binaries’ sizes by 5% (i.e.,
the displacement budget was set to 5% of the binary’s original size). We selected 200
and 5% as parameters for this experiment because our attacks were executed for 200
iterations at most, and achieved almost perfect success when increasing binaries’ sizes
by 5% (see below).

Except for a single benign binary that was misclassified by MalConv after being
transformed, no other misclassification occurred. Hence, we can conclude that the
DNNs are robust against naïve transformations, and that more principled approaches
are needed to mislead them.

4.3.3 White-box Attacks vs. DNNs

In the white-box setting, we evaluated seven variants of our attack. One variant,
to which refer by IPR, relies on the IPR transformations. Three variants, Disp-1,
Disp-3, and Disp-5, rely on the Disp transformations, where the numbers indicate
the displacement budget as a percentage of the binaries’ sizes (e.g., Disp-1 increases
binaries’ sizes by 1%). The last three attack variants, IPR+Disp-1, IPR+Disp-3,
and IPR+Disp-5, use the IPR and Disp transformations combined. We executed the
attacks up to 200 iterations and stopped early if the binaries were misclassified with
high confidence. For malicious (resp., benign) binaries, this meant that they were
misclassified as benign (resp., malicious) with an estimated probability that they are
malicious below the probability where the FPR (resp., FNR) is 0.1%. We set 5% as the

4.3 Evaluation 46

IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5 Kreuk-1 Kreuk-3 Kreuk-5B
in

a
ri

e
s
 m

is
c
la

s
s
ifi

e
d

 (
%

)

0
10
20
30
40
50
60
70
80
90

100
Avast
Endgame
MalConv

(a) Malicious binaries

IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5 Kreuk-1 Kreuk-3 Kreuk-5B
in

a
ri

e
s
 m

is
c
la

s
s
ifi

e
d

 (
%

)

0
10
20
30
40
50
60
70
80
90

100
Avast
Endgame
MalConv

(b) Benign binaries

Figure 4.4: Attacks’ success rates in the white-box setting. For each attack and DNN,
we provide the percentage of misclassified malicious (a) and benign (b) binaries. The
brightly colored bars show the percentage of binaries that were misclassified with high
confidence.

maximum displacement budget and 200 as the maximum number of iterations, as we
empirically found that the attacks were almost always successful with these parameters.

In addition to our attacks, we implemented and evaluated an attack proposed by
Kreuk et al. [108]. To mislead DNNs, the attack of Kreuk et al. appends adversarially
crafted bytes to binaries. These bytes are crafted via an iterative algorithm that first
computes the gradient gi of the loss with respect to the embedding E(xi) of the binary
xi at the ith iteration, and then sets the adversarial bytes to minimize the L2 distance of
the new embedding E(xi+1) from E(xi)+εsign(gi), where ε is a scaling parameter. We
tested three variants of the attack, denoted by Kreuk -1, Kreuk -3, and Kreuk -5, which
increase the binaries’ sizes by 1%, 3%, and 5%, respectively. As a loss function, we used
Losscw. Similarly to our attacks, we executed Kreuk et al.’s attacks up to 200 iterations,
stopping sooner if misclassification with high confidence occurred. Furthermore, we set
ε=1, as we empirically found that it leads to high evasion success.

We measured the success rates of attacks by the percentage of binaries that were
misclassified. The results of the experiment are provided in Fig. 4.4. One can im-
mediately see that attacks using the Disp transformations were more successful than
IPR. In fact, IPR was able to mislead only Endgame, achieving 62% success rate
at misclassifying malicious binaries as benign, and 74% success rate at misclassifying
benign binaries as malicious. IPR was unable to mislead AvastNet and MalConv in
any attempt. This indicates that using binaries’ headers for classification, similarly to
Endgame, may lead to more vulnerable models than when excluding the header.

In contrast to IPR, other variants of our attack achieved considerable success.
For example, Disp-5 achieved high-confidence misclassification in all attempts, except
when attempting to mislead AvastNet to misclassify benign binaries, where 81% of the
attempts succeeded. As one would expect, attacks with higher displacement budget

4.3 Evaluation 47

were more successful. Specifically, attacks with 5% displacement budget were more
successful than ones with 3%, and the latter were more successful than attacks with
1% displacement budget.

In addition to achieving higher success rates, another advantage of Disp-based
attacks over IPR-based ones is their time efficiency. While displacing instruction at
random from within a function with n instructions has O(n) time complexity, certain
IPR transformations have O(n2) time complexity. For example, reordering instructions
requires building a dependence graph and extracting instructions one after the other.
If every instruction in a function depends on previous ones, this process takes O(n2)
time. In practice, we found that while Disp-based attacks took about 159 seconds to
run on average, IPR-based ones took 606 seconds.

While IPR had limited success, combining IPR with Disp achieved higher success
rates than respective Disp-only attacks with the same displacement budget. For exam-
ple, IPR+Disp-1 had 6% higher success rate than Disp-1 when misleading Endgame to
misclassify a malicious binary as benign (97% vs. 91% success rate). Thus, in certain
situations, Disp and IPR can be combined to fool the DNNs while increasing binaries’
sizes less than Disp alone.

The variants of Kreuk et al.’s attack achieved success rates comparable to vari-
ants of our attack. For example, Kreuk -5 was almost always able to mislead the
DNNs—it achieved 99% and 98% success rate when attempting to mislead Endgame
and MalConv , respectively, to misclassify malicious binaries, and 100% success rate in
all the other attempts. One can also see that the success rate increased as the attacks
increased the binaries’ sizes. In particular, Kreuk -5 was more successful at misleading
the DNNs than Kreuk -3, which, in turn, was more successful than Kreuk -1.

While Kreuk et al.’s attack achieved success rates that are comparable to ours,
it is important to highlight that their attack is easier to defend against. As a proof
of concept, we implemented a sanitization method to defend against the attack. The
method finds all the sections that do not contain instructions (using the IDAPro dis-
assembler [77]) and masks the sections’ content with zeros. As Kreuk et al.’s attack
does not introduce code to the binaries, the defense masks the adversarial bytes that
it introduces. Consequently, the evasion success rates of the attack drop significantly.
For example, the success rates of Kreuk -5 against MalConv drop to 1% and 11% for
malicious and benign binaries, respectively. At the same time, the defense has little-
to-no effect on our attacks. For example, Disp-5 achieves 91% and 100% success rates
for malicious and benign binaries, respectively. Moreover, the classification accuracy
remains high for malicious (99%) and benign (93%) binaries after the defense.

4.3.4 Black-box Attacks vs. DNNs

As explained in Sec. 4.2, because the DNNs’ input is discrete, estimating gradient infor-
mation to mislead them in a black-box setting is not possible. To this end, the black-box
version of Alg. 2 uses a hill-climbing approach to query the DNN after each attempted
transformation to decide whether to keep the transformation. Because querying the
DNNs after each attempted transformation leads to a significant increase in run time
of the attacks (∼30× on a machine with GeForce GTX 980 GPU), we limited our ex-
periments to Disp transformations with a displacement budget of 5%, and attempted

4.3 Evaluation 48

to mislead the DNNs to misclassify malicious binaries. We executed the attacks up to
200 iterations and stopped early if misclassification occurred.

The attacks were most successful against Endgame, achieving a success rate of
97%. In contrast, 33% of the evasion attempts against MalConv succeeded, and none
of attempts against AvastNet were successful. In cases of failure, we observed that the
optimization process was getting stuck in local minimas. We believe that it may be
possible to enhance the performance of the attacks in such cases by deploying methods
for overcoming local minimas (e.g., the Metropolis algorithm [151], or Monte-Carlo tree
search [194]).

Motivated by the universality property of adversarial examples [144] and the finding
of Kreuk et al. that adversarial bytes generated for one binary may lead to evasion when
appended to another binary [108], we wanted to see if the transformations applied to
one binary can lead to evasion when applied to another. If so, attackers in a black-box
setting may invest considerable effort to transform one binary to mislead malware-
detection and then apply the same transformations to other binaries. We focused on
Disp transformations and tested whether the semantic nops that were added to certain
binaries via the Disp-5 attack in the white-box setting lead to evasion when added
to other binaries. To do so, we developed a modified version of Disp that displaces
code within binaries at random, but instead of drawing the semantic nops randomly,
it borrows them from another previously transformed binary.

We tested this approach with malicious binaries and found that it leads to relatively
high success rates. For AvastNet and Endgame, certain transformations led to evasion
success rates as high as 75% and 86%, respectively, when borrowed from one binary and
applied to other binaries (i.e., merely 14%–25% lower success rates than for white-box
attacks). The success rates were more limited against MalConv , achieving a maximum
of 24%.

4.3.5 Transferability of Attacks to Commercial Anti-Viruses

To assess whether our attacks affect commercial anti-viruses, we tested how the binaries
that were misclassified by the DNNs with high confidence in the white-box setting get
classified by anti-viruses available via VirusTotal [41]—an online service that aggregates
the results of 68 commercial anti-viruses. Since anti-viruses often rely on ML for
malware detection, and since prior work has shown that adversarial examples that evade
one ML model often evade other models (a phenomenon called transferability) [66, 156],
we expected that the malicious (resp., benign) binaries generated by our attacks would
be classified as malicious by fewer (resp., more) anti-viruses than the original binaries.

As a baseline, we first classified the original binaries using the VirusTotal anti-
viruses. As one would expect, all the malicious binaries were detected by several
anti-viruses. The median number of anti-viruses that detected any particular malware
binary as malicious was 55, out of 68 total anti-viruses. In contrast, the original benign
binaries were detected by a median of 0 anti-viruses, with a total of five false positives
across all binaries and anti-viruses. To further gauge the accuracy of the commercial
anti-viruses, we used them to classify binaries that were transformed at random us-
ing the Disp and IPR transformation types (in the same manner as Sec. 4.3.2). We
found that certain anti-viruses were susceptible to such simple evasion attempts—the

4.3 Evaluation 49

DNN IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5

AvastNet - 36 35 36 36 35 36
Endgame 33 35 36 35 35 36 35
MalConv - 36 35 36 36 35 36

(a) Malicious binaries

DNN IPR Disp-1 Disp-3 Disp-5 IPR+Disp-1 IPR+Disp-3 IPR+Disp-5

AvastNet - 2 2 1 2 2 1
Endgame 1 2 2 2 2 2 2
MalConv - 1 1 1 1 1 1

(b) Benign binaries

Table 4.4: The median number of VirusTotal anti-viruses that positively detected
(i.e., as malicious) malicious (a) and benign (b) binaries that were transformed by
our white-box attacks (columns) to mislead the different DNNs (rows). The median
number of anti-viruses that positively detected for the original malicious and benign
binaries is 55 and 0, respectively. Cases in which the change in the number of detections
is statistically significant are in bold.

median number of anti-viruses that detected the malicious binaries correctly decreased
to 42. At the same time, the median number of anti-viruses that detected benign bi-
naries as malicious remained 0. Presumably, some anti-viruses were evaded by random
transformations due to using fragile detection mechanisms, such as signatures.

Table 4.4 summarizes the effect of our attacks on the number of positive detec-
tions (i.e., classification of binaries as malicious) by the anti-viruses. Compared to the
original malicious binaries and ones that were transformed at random, the malicious bi-
naries transformed by our attacks were detected as malicious by fewer anti-viruses. The
median number of anti-viruses that correctly detected the malicious binaries decreased
from 55 for the original binaries and 42 for ones transformed at random to 33–36, de-
pending on the attack variant and the targeted DNN. According to a Kruskal-Wallis
test, this reduction is statistically significant (p <0.01 after Bonferroni correction). In
other words, the malicious binaries that were transformed by our attacks were detected
by only 49%–53% of the VirusTotal anti-viruses in the median case.

The number of positive detections of benign binaries increased after they were
transformed by our attacks: The median number of anti-viruses that detected the
benign binaries as malicious was one or two, depending on the attack variant and the
targeted DNN. In certain cases, the number of positive detections was as high as 19
(i.e., 28% of the VirusTotal anti-viruses reported the binary as malicious). Except
for one attack (IPR targeting Endgame), the increase in the number of detections is
statistically significant (p <0.01 after Bonferroni correction), according to a Kruskal-
Wallis test.

Our attacks evaded a larger number of anti-viruses compared to random transfor-
mations, likely due to transferring from our DNNs to ML detectors that are used by
the anti-viruses. A glance at the websites of the anti-viruses’ vendors showed that

4.4 Discussion 50

15 of the 68 vendors explicitly advertise relying on ML for malware detection. These
anti-viruses were especially susceptible to evasion by our attacks. Of particular note,
one vendor advertises that it relies solely on ML for malware detection. This vendor’s
anti-virus misclassified 78% of the benign binaries that were produced by one variant of
our attack as malicious. In general, a median of 1–2 anti-viruses (from the 15 vendors)
misclassified benign binaries that were processed by our attacks as malicious. Even
more concerning, a popular anti-virus whose vendor reports to rely on ML misclas-
sified 85% of the malicious binaries produced by a variant of our attack as benign.
Generally, malicious binaries that were produced by our attacks were detected by a
median number of 7–9 anti-viruses of the 15—down from 12 positive detections for
the original binaries. All in all, while online advertising (or lack thereof) is a weak
indicator of the nature of detectors used by anti-viruses (e.g., some prominent ven-
dors do not explicitly advertise the use of ML), our results support that binaries that
were produced by our attacks were able to evade ML-based detectors that are used by
anti-virus vendors.

4.3.6 Correctness

A key feature of our attacks is that they transform binaries to mislead DNNs while pre-
serving their functionality. We followed standard practices from the binary-diversification
literature [104, 105, 158] to ensure that the functionality of the binaries was kept intact
after being processed by our attacks. First, we transformed ten different benign bina-
ries (e.g., python.exe of Python version 2.7, and Cygwin’s4 less.exe and grep.exe)
with our attacks and manually validated that they functioned properly after being
transformed. For example, we were still able to search files with grep after the trans-
formations. Second, we transformed the .exe and .dll files of a stress-testing tool5
with our attacks and checked that the tool’s tests passed after the transformations.
Using stress-testing tools to evaluate the correctness of binary-transformation methods
is common, as such tools are expected to cover most branches affected by the trans-
formations. Third, and last, we also transformed ten malware binaries and used the
Cuckoo Sandbox [69]—a popular sandbox for malware analysis—to check that their
behavior remained the same. All ten binaries attempted to access the same hosts, IP
addresses, files, APIs, and registry keys before and after being transformed.

4.4 Discussion
Our proposed attacks achieved high success rates at fooling DNNs for malware detection
in white-box and black-box settings. The attacks were also able to mislead commercial
anti-viruses, especially ones that leverage ML algorithms. To protect users and their
systems, it is important to develop mitigation measures to make malware detection
robust against evasion by our attacks. We now discuss potential mitigations to our
attacks, followed by takeaways.

4https://www.cygwin.com/
5https://www.passmark.com/products/performancetest/

https://www.cygwin.com/
https://www.passmark.com/products/performancetest/

4.4 Discussion 51

4.4.1 Potential Mitigations

Prior Defenses We considered several prior defenses to mitigate our attacks, but,
unfortunately, most showed little promise. For instance, adversarial training (e.g., [66,
113]) is infeasible, as the attacks are computationally expensive. Depending on the
attack variant, it took an average of 159 or 606 seconds to run an attack. As a re-
sult, running just a single epoch of adversarial training would to take several weeks
(using our hardware configuration), as each iteration of training requires running an
attack for every sample in the training batch. Moreover, while adversarial training
might increase the DNNs’ robustness against attackers using certain transformation
types, attackers using new transformation types may still succeed at evasion [55]. De-
fenses that provide formal guarantees (e.g., [103, 141]) are even more computationally
expensive than adversarial training. Moreover, those defenses are restricted to adver-
sarial perturbations that, unlike the ones produced by our attacks, have small L∞- and
L2-norms. Prior defenses that transform the input before classification (e.g., via quan-
tization [226]) are designed mainly for images and do not directly apply to binaries.
Lastly, signature-based malware detection would not be effective, as our attacks are
stochastic and produce different variants of the binaries after different executions.

Differently from prior attacks on DNNs for malware detection [101, 108, 205], our
attacks do not merely append adversarially crafted bytes to binaries, or insert them
between sections. Such attacks may be defended against by detecting and sanitizing the
inserted bytes via static analysis methods (e.g., similarly to the proof of concept shown
in Sec. 4.3.3, or using other methods [110]). Instead, our attacks transform binaries’
original code, and extend binaries only by inserting instructions that are executed
at run time at various parts of the binaries. As a result, our attacks are difficult to
defend against via static or dynamic analyses methods (e.g., by detecting and removing
unreachable code), especially when augmented by measures to evade these methods.

Binary normalization [6, 40, 216] is an approach that was proposed to enhance
malware detection that seemed viable for defending against our attacks. The high-
level idea of normalization is to employ certain transformations to map binaries to a
standard form and thus undo attackers’ evasion attempts before classifying the binaries
as malicious or benign. For example, Christodorescu et al. proposed a method to
detect and remove semantic nops from binaries before classification, and showed that it
improves the performance of commercial anti-viruses [40]. To mitigate our Disp-based
attacks, we considered using the semantic nop detection and removal method followed
by a method to restore the displaced code to its original location. Unfortunately,
we realized that such a defense can be undermined using opaque predicates [44, 146].
Opaque predicates are predicates whose value (w.l.g., assume true) is known a priori
to the attacker, but is hard for the defender to deduce. Often, they are based on
NP -hard problems [146]. Using opaque predicates, attackers can produce semantic
nops that include instructions that affect the memory and registers only if an opaque
predicate evaluates to false. Since opaque predicates are hard for defenders to deduce,
the defenders are likely to have to assume that the semantic nops impact the behavior
of the program. As a result, the semantic nops would survive the defenders’ detection
and removal attempts. As an alternative to opaque predicates, attackers can also
use evasive predicates—predicates that evaluate to true or false with an overwhelming

4.4 Discussion 52

sub eax, -0x20
test ebx, ebx

(83e8e0)
(85db)

(a)

add eax, 0x20
or ebx, ebx

(83c020)
(09db)

(b)

Figure 4.5: An example of normalizing code via Eqv . The original code (a) is trans-
formed via Eqv (b) to decrease the lexicographic order.

probability (e.g., checking if a randomly drawn 32-bit integer is equal to 0) [16]. In
this case, the binary will function properly the majority of the time, and may function
differently or crash once every many executions.

The normalization methods proposed by prior work would not apply to the trans-
formations performed by our IPR-based attacks. Therefore, we explored methods to
normalize binaries to a standard form to undo the effects of IPR before classification.
We found that a normalization process that leverages the IPR transformations to map
binaries to the form with the lowest lexicographic representation (where the alpha-
bet contains all possible 256 byte values) is effective at preventing IPR-based attacks.
Formally, if [x] is the equivalence class of binaries that are functionally equivalent to
x and that can be produced via the IPR transformation types, then the normaliza-
tion process produces an output norm(x) ∈ [x], such that, norm(x) ≤ xi for every
xi ∈ [x]. For each transformation type, we devise an operation that would decrease a
binary’s lexicographic representation when applied: 1) instructions would be replaced
with equivalent ones only if the new instructions are lexicographically lower (Eqv); 2)
registers in functions would be reassigned only if the byte representation of the first
impacted instruction would decrease (Regs); 3) instructions would be reordered such
that each time we would extract the instruction from the dependence graph with the
lowest byte representation that does not depend on any of the remaining instructions
in the graph (Ord1); and 4) push and pop instructions that save register values across
function calls would be reordered to decrease the lexicographic representation while
maintaining the last-in-first-out order (Ord2). Fig. 4.5 depicts an example of replacing
one instruction with an equivalent one via Eqv to decrease the lexicographic order of
code.

Unfortunately, as shown in Fig. 4.6, when the different types of transformation types
are composed, applying individual normalization operations does not necessarily lead
to the binary’s variant with the minimal lexicographic representation, as the procedure
may be stuck in a local minima. To this end, we propose a stochastic algorithm that
is guaranteed to converge to binaries’ normalized variants if executed for a sufficiently
large number of iterations.

Alg. 3 presents a psuedocode of the normalization algorithm. The algorithm re-
ceives a binary x and the number of iterations niters as inputs. It begins by drawing
a random variant of x, by applying all the transformation types to each function at
random (line 1). The algorithm then proceeds to apply each of the individual nor-
malization operations to decrease the lexicographic representation of the binary (lines
14–24), while self-supervising the normalization process. Specifically, the algorithm
keeps track of the last iteration an operation decreased the binary’s representation
(line 19). If none of the four operations affect any of the functions, we deduce that the

4.4 Discussion 53

push edx
push ebx
mov dh, 0x4
mov bh, 0x3
pop ebx
pop edx

(52)
(53)
(b604)
(b703)
(5b)
(5a)

(a)

push edx
push ebx
mov bh, 0x4
mov dh, 0x3
pop ebx
pop edx

(52)
(53)
(b704)
(b603)
(5b)
(5a)

(b)
push edx
push ebx
mov bh, 0x3
mov dh, 0x4
pop ebx
pop edx

(52)
(53)
(b703)
(b604)
(5b)
(5a)

(c)

push edx
push ebx
mov dh, 0x3
mov bh, 0x4
pop ebx
pop edx

(52)
(53)
(b603)
(b704)
(5b)
(5a)

(d)

Figure 4.6: The normalization process can get stuck in a local minima. The lex-
icographic order of the original code (a) increases when reassigning registers (b) or
reordering instructions (c). However, composing the two transformation (d) decreases
the lexicographic order.

normalization process is stuck in a (global or local) minima, and a random binary is
drawn again by randomizing all functions (limes 10–12), and the normalization process
restarts.

When niters → ∞ (i.e., the number of iterations is large enough), Alg. 3 would
eventually converge to a global minima. Namely, it would find the variant of x with
the minimal lexicographic representation. In fact, we are guaranteed to find norm(x)
even if we simply apply the transformation types at random x for niters → ∞ itera-
tions. When testing the algorithm with two binaries of moderate size, we found that
niters=2,000 was sufficient to converge for the same respective variants after every run.
These variants are likely to be the global minimas. However, executing the algorithm
for 2,000 iterations is computationally expensive, and impractical within the context
of a widely deployed malware-detection system. Hence, for the purpose of our exper-
iments, we set niters=10, which we found to be sufficient to successfully mitigate the
majority of attacks.

We executed the normalization algorithm using the malicious and benign binaries
produced by the IPR-based attacks to fool Endgame in the white-box setting, and
found that the success rates dropped to 3% and 0%, respectively, compared to 62%
and 74% before normalization. At the same time, the classification accuracy over the
original binaries was not affected by normalization. As our experiments in Sec. 4.3
have shown, generating functionally equivalent variants of binaries via random trans-
formations results in correct classifications almost all of the time. Normalization of
binaries to the minimal lexicographic representation deterministically leads to the spe-
cific functionally equivalent variants that get correctly classified with high likelihood.

Instruction Masking While normalization was useful for defending against IPR-
based attacks, it cannot mitigate the more pernicious Disp-based attacks that are aug-
mented with opaque or evasive predicates. Moreover, normalization has the general
limitations that attackers could use transformations that the normalization algorithm
is not aware of or could obfuscate code to inhibit normalization. Therefore, we explored

4.4 Discussion 54

Algorithm 3: In-place normalization.
Input : x, niters
Output: xmin

1 x̂← RandomizeAll(x);
2 i, lastupdate ← 0, 0;
3 xmin ← x̂;
4 while i < niters do
5 if i%4 = 0 then

// Normalization operations
6 ops ← {};
7 for f ∈ x̂ do
8 ops[f] = {Eqv ,Regs,Ord1 ,Ord2};

// If stuck, randomize and restart
9 if i− lastupdate ≥ 4 then

10 x̂← RandomizeAll(x);
11 for f ∈ x̂ do
12 o← pop(ops[f]);
13 x̃← Minimize(x̂, f, o);
14 if x̂ 6= x̃ then
15 x̂← x̃;
16 lastupdate ← i;
17 if x̂ < xmin then
18 xmin ← x̂;
19 i← i+ 1;
20 return xmin;

additional defensive measures. In particular, motivated by the fact that randomizing
binaries without the guidance of an optimization process is unlikely to lead to misclas-
sification, we explored whether masking instructions at random can mitigate attacks
while maintaining high performance on the original binaries. The defense works by
selecting a random subset of the bytes that pertain to instructions and masking them
with zeros (a commonly used value to pad sections in binaries). While the masking is
likely to result in an ill-formed binary that is unlikely to execute properly (if at all), the
masking only occurs before classification, which does not require a functional binary.
Depending on the classification result, one can decide whether or not to execute the
unmasked binary.

We tested the defense on binaries generated via the IPR+Disp-5 white-box attack
and found that it is effective at mitigating attacks. For example, when masking 25%
of the bytes pertaining to instructions, the success rates of the attack decreases from
83%–100% for malicious and benign binaries against the three DNNs to 0%–20%, while
the accuracy on the original samples was only slightly affected (e.g., it became 94%
for Endgame). Masking less than 25% of the instructions’ bytes was not as effective
at mitigating attacks, while masking more than 25% led to a significant decrease in
accuracy on the original samples.

4.5 Conclusion 55

Detecting Adversarial Examples To prevent binaries transformed with our attacks
(i.e., adversarial examples) from fooling malware detection, defenders may attempt to
deploy methods to detect them. In cases of positive detections of adversarial examples,
defenders may immediately classify them as malicious (regardless of whether they were
originally malicious or benign). For example, because Disp-based attacks increase bi-
naries’ sizes and introduce additional jmp instructions, defenders may train statistical
ML models that use features such as binaries’ sizes and the ratio between jmp instruc-
tions and other instructions to detect adversarial examples. While training relatively
accurate detection models may be feasible, we expect this task to be difficult, as the
attacks increase binaries’ sizes only slightly (1%–5%), and do not introduce many jmp
instructions (7% median increase for binaries transformed via Disp-5). Furthermore,
approaches for detecting adversarial examples are likely to be susceptible to evasion
attacks (e.g., by introducing instructions after opaque predicates to decrease the ratio
between jmp instructions and others). Last, another risk that defenders should take
into account is that the defense should be able to precisely distinguish between adver-
sarial examples and non-adversarial benign binaries that are transformed by similar
methods to mitigate code-reuse attacks [105, 158].

4.4.2 Takeaways

While masking a subset of the bytes that pertain to instructions led to better per-
formance on adversarial examples, it was still unable to prevent all evasion attempts.
Although the defense may raise the bar to attackers, and make attacks even more
difficult if combined with a method to detect adversarial examples, attackers may be
able to adapt to undermine them. For example, attackers may build on techniques
for optimization over expectations to generate binaries that would mislead the DNNs
even when masking a large number of instructions, in a similar manner to how attack-
ers can evade image-classification DNNs under varying lighting conditions and camera
angles [11, 57, 191, 192]. In fact, prior work has already demonstrated how defenses
are often vulnerable to adaptive, more sophisticated, attacks [10]. Thus, since there is
no clear defense to prevent attacks against the DNNs that we studied in this chapter,
or even general methods to prevent attackers from fooling ML models via arbitrary
perturbations, we advocate for augmenting malware-detection systems with methods
that are not based on ML (e.g., ones using templates to reason about the semantics
of programs [39]), and against the use of ML-only detection methods, as has become
recently popular [47].

4.5 Conclusion
The work presented in the chapter proposes evasion attacks on DNNs for malware
detection. Differently from prior work, the attacks do not merely insert adversarially
crafted bytes to mislead detection. Instead, guided by optimization processes, our
attacks transform the instructions of binaries to fool malware detection while keeping
functionality of the binaries intact. As a result, these attacks are challenging to defend
against. We conservatively evaluated different variants of our attack against three

4.5 Conclusion 56

DNNs under white-box and black-box settings, and found the attacks successful as
often as 100% of the time. Moreover, we found that the attacks pose a security risk to
commercial anti-viruses, particularly ones using ML, achieving evasion success rates of
up to 85%. We explored several potential defenses, and found some to be promising.
Nevertheless, adaptive adversaries remain a risk, and we recommend the deployment of
multiple detection algorithms, including ones not based on ML, to raise the bar against
such adversaries.

Chapter 5

A General Framework for Attacks
with Objectives

5.1 Introduction
In the previous chapters (Chaps. 3–4), to create adversarial examples with multiple
objectives we modeled the objectives in an ad hoc fashion. In contrast, in this chapter
we propose a general framework for capturing multiple objectives in the process of
generating adversarial examples. Our framework builds on Generative Adversarial
Networks (GANs, see Chap. 5.2.3) to train an attack generator, i.e., a neural network
that can generate attack instances (i.e., adversarial inputs) that meet certain objectives.
Due to our framework’s basis in GANs, we refer to it using the anagram AGNs, for
adversarial generative networks.

To illustrate the utility of AGNs, we return to the task of printing eyeglasses to fool
face-recognition systems [191] and demonstrate how to accommodate a number of types
of objectives within it. Specifically, we use AGNs to accommodate robustness objectives
to ensure that produced eyeglasses fool face-recognition systems in different imaging
conditions (e.g., lighting, angle) and even despite the deployment of specific defenses;
inconspicuousness objectives, so that the eyeglasses will not arouse the suspicion of
human onlookers; and scalability objectives requiring that relatively few adversarial
objects are sufficient to fool DNNs in many contexts. We show that AGNs can be
used to target two DNN-based face-recognition algorithms that achieve human-level
accuracy—VGG [159] and OpenFace [3]—and output eyeglasses that enable an attacker
to either evade recognition or to impersonate a specific target, while meeting these
additional objectives. To demonstrate that AGNs can be effective in contexts other
than face recognition, we also train AGNs to fool a classifier designed to recognize
handwritten digits and trained on the MNIST dataset [116].

In addition to illustrating the extensibility of AGNs to various types of objectives,
these demonstrations highlight two additional features that, we believe, are significant
advances. First, AGNs are flexible in that an AGN can train a generator to produce
adversarial instances with only vaguely specified characteristics. For example, we have
no way of capturing inconspicuousness mathematically; rather, we can specify it only
using labeled instances. Still, AGNs can be trained to produce new and convincingly

57

5.2 A Novel Attack Against DNNs 58

inconspicuous adversarial examples. Second, AGNs are powerful in generating adver-
sarial examples that perform better than those produced in previous efforts using more
customized techniques. For example, though some of the robustness and inconspicu-
ousness objectives we consider here were also considered in prior work, the adversarial
instances produced by AGNs perform better (e.g., ∼70% vs. 31% average success rate
in impersonation) and accommodate other objectives (e.g., robustness to illumination
changes). AGNs enable attacks that previous methods did not.

We next describe the AGN framework (Sec. 5.2), and its instantiation against face-
recognition DNNs (Sec. 5.3). Then, we evaluate the effectiveness of AGNs, includ-
ing with physically realized attacks and a user study to examine inconspicuousness
(Sec. 5.4). Finally, we discuss our work and conclude (Sec. 5.5).

5.2 A Novel Attack Against DNNs
In this section, we describe the AGN framework for attacking DNNs. We define our
threat model in Sec. 5.2.1, discuss the challenges posed by vaguely specified objec-
tives in Sec. 5.2.2, provide background on GANs in Sec. 5.2.3, and describe the attack
framework in Sec. 5.2.4.

5.2.1 Threat Model

Similarly to Chaps. 3–4, we assume an adversary who gains access to an already trained
DNN (e.g., one trained for face recognition), and may only alter the inputs to trick the
DNN into misclassifying. We consider targeted attacks (e.g., to impersonate another
subject enrolled in a face-recognition system) and untargeted attacks (e.g., to dodge
recognition by a face-recognition system). We mainly consider white-box attacks, but
we also demonstrate black-box attacks based on transferability from surrogate models,
in Sec. 5.4.4.

The framework we propose supports attacks that seek to satisfy a variety of objec-
tives, such as maximizing the DNN’s confidence in the target class in impersonation
attacks and crafting perturbations that are inconspicuous. Maximizing the confidence
in the target class is especially important in scenarios where strict criteria may be used
in an attempt to ensure security—for instance, scenarios when the confidence must
be above a threshold, as is used to to prevent false positives in face-recognition sys-
tems [87]. While inconspicuousness may not be necessary in certain scenarios (e.g.,
unlocking a mobile device via face recognition), attacks that are not inconspicuous
could easily be ruled out in some safety-critical scenarios (e.g., when human operators
monitor face-recognition systems at airports [203]).

5.2.2 Vaguely Specified Objectives

In practice, certain objectives, such as inconspicuousness, may elude precise specifica-
tion. In early stages of our work, while attempting to produce eyeglasses to fool face
recognition, we attempted multiple ad-hoc approaches to enhance the inconspicuous-
ness of the eyeglasses in comparison to the attacks shown in Chap. 3, with limited

5.2 A Novel Attack Against DNNs 59

success. For instance, starting from solid-colored eyeglasses in either of the RGB or
HSV color spaces, we experimented with algorithms that would gradually adjust the
colors until evasion was achieved, while fixing one or more of the color channels. We also
attempted to use Compositional Pattern-Producing Neural Networks [202] combined
with an evolutionary algorithm to produce eyeglasses with symmetric or repetitive
patterns. These approaches had limited success both at capturing inconspicuousness
(e.g., real eyeglasses do not necessarily have symmetric patterns) and at evasion, or
failed completely. Thus, instead of pursuing ad hoc approaches to formalize properties
that may be insufficient or unnecessary for inconspicuousness, in this work we achieve
inconspicuousness via a general framework that models inconspicuous eyeglasses based
on many examples thereof, while simultaneously achieving additional objectives, such
as evasion.

5.2.3 Generative Adversarial Networks (GANs)

Our attacks build on GANs [65] to create accessories (specifically, eyeglasses) that
closely resemble real ones. GANs provide a framework to train a neural network,
termed the generator (G), to generate data that belongs to a distribution (close to
the real one) that underlies a target dataset. G maps samples from a distribution, Z,
that we know how to sample from (such as [−1, 1]d, i.e., d-dimensional vectors of reals
between −1 and 1) to samples from the target distribution.

To train G, another neural network, called the discriminator (D), is used. D’s
objective is to discriminate between real and generated samples. Thus, training can be
conceptualized as a game with two players, D and G, in which D is trained to emit 1 on
real examples and 0 on generated samples, and G is trained to generate outputs that
are (mis)classified as real by D. In practice, training proceeds iteratively and alternates
between updating the parameters of G and D via back-propagation. G is trained to
minimize the following function:

LossG(Z,D) =
∑
z∈Z

log
(

1− D
(
G(z)

))
(5.1)

LossG is minimized when G misleads D (i.e., D(G(z)) is 1). D is trained to maximize
the following function:

GainD(G, Z, data) =
∑
x∈data

log
(
D
(
x
))

+
∑
z∈Z

log
(

1− D
(
G(z)

))
(5.2)

GainD is maximized when D emits 1 on real samples and 0 on all others.
Several GAN architectures and training methods have been proposed, we build on

Deep Convolutional GANs [164].

5.2.4 Attack Framework

Except for a few exceptions [15, 161, 234], in traditional evasion attacks against DNNs
the attacker directly alters benign inputs to maximize or minimize a pre-defined func-
tion related to the desired misclassification (see Chap. 2). Differently from previous

5.2 A Novel Attack Against DNNs 60

attacks, we propose to train neural networks to generate outputs that can be used
to achieve desired evasions (among other objectives), instead of iteratively tweaking
benign inputs to become adversarial.

More specifically, in our AGN framework, we propose to train neural networks to
generate images of artifacts (e.g., eyeglasses) that would lead to misclassification. We
require that the artifacts generated by these neural networks resemble a reference set of
artifacts (e.g., real eyeglass designs), as a means to satisfy an objective that is hard to
specify precisely (e.g., inconspicuousness). Similarly to GANs, AGNs are adversarially
trained against a discriminator to learn how to generate realistic images. Differently
from GANs, AGNs are also trained to generate (adversarial) outputs that can mislead
given neural networks (e.g., neural networks designed to recognize faces).

Formally, three neural networks comprise an AGN: a generator, G; a discriminator,
D; and a pre-trained DNN whose classification function is denoted by F. When given an
input x to the DNN, G is trained to generate outputs that fool F and are inconspicuous
by minimizing1

LossG(Z,D)− κ ·
∑
z∈Z

LossF(x+ G(z)) (5.3)

We define LossG in the same manner as in Eqn. 5.1; minimizing it aims to generate real-
looking (i.e., inconspicuous) outputs that mislead D. LossF is a loss function defined
over the DNN’s classification function that is maximized when training G (as −LossF
is minimized). The definition of LossF depends on whether the attacker aims to achieve
an untargeted misclassification or a targeted one. For untargeted attacks, we use:

LossF(x+ G(z)) =
∑
i 6=x

Fci(x+ G(z))− Fcx(x+ G(z))

while for targeted attacks we use:

LossF(x+ G(z)) = Fct(x+ G(z))−
∑
i 6=t

Fci(x+ G(z))

where Fc(·) is the DNN’s output for class c (i.e., the estimated probability of class c
in case of a softmax activation in the last layer). By maximizing LossF , for untargeted
attacks, the probability of the correct class cx decreases; for targeted attacks, the
probability of the target class ct increases. We chose this definition of LossF because
we empirically found that it causes AGNs to converge faster than Losscw [31], or loss
functions defined via cross entropy, as used in Chap. 3. κ is a parameter that balances
the two objectives of G; we discuss it further below.

As part of the training process, D’s weights are updated to maximize GainD, defined
in Eqn. 5.2, to tell apart realistic and generated samples. In contrast to D and G, F’s
weights are unaltered during training (as attacks should fool the same DNN at inference
time).

The algorithm for training AGNs is provided in Alg. 4. The algorithm takes as
input a set of benign examples (X), a pre-initialized generator and discriminator, a

1We slightly abuse notation by writing x+r to denote an image x that is modified by a perturbation
r. In practice, we use a mask and set the values of x within the masked region to the exact values of
r.

5.3 AGNs that Fool Face Recognition 61

Algorithm 4: AGN training
Input : X, G, D, F, dataset , Z, Ne, sb, κ ∈ {0, 1}
Output: Adversarial G

1 for e← 1 to Ne do
2 create batches of size sb from dataset ;
3 for batch ∈ batches do
4 z ← sb samples from Z;
5 gen ← G(z);
6 batch← concat(gen, batch);
7 if even iteration then // update D
8 update D by backpropagating ∂GainD

∂batch ;
9 else // update G

10 if F fooled then return G ;
11 d1 ← −∂GainD

∂gen ;
12 x← sb sample images from X;
13 x← x+ gen;
14 Compute forward pass F(x);
15 d2 ← ∂LossF

∂gen ;
16 d1, d2 ← normalize(d1, d2);
17 d← κ · d1 + (1− κ) · d2;
18 update G via backpropagating d;

neural network to be fooled, a dataset of real examples (which the generator’s output
should resemble; in our case this is a dataset of eyeglasses), a function for sampling
from G’s latent space (Z), the maximum number of training epochs (Ne), the batch
size sb, and κ ∈ [0, 1]. The result of the training process is an adversarial generator
that creates outputs (e.g., eyeglasses) that fool F. In each training iteration, either D
or G is updated using a subset of the data chosen at random. D’s weights are updated
via gradient ascent to increase GainD; G’s weights are updated via gradient descent to
minimize Eqn. 5.3. To balance the generator’s two objectives, the gradients from GainD

and LossF are normalized to the lower Euclidean norm of the two, and then combined
into a weighted average controlled by κ. When κ is closer to zero, more weight is given
to fooling F and less to making the output of G realistic. Conversely, setting κ closer
to one places more weight on increasing the resemblance between G’s output and real
examples. Training ends when the maximum number of training epochs is reached, or
when F is fooled, i.e., when impersonation or dodging is achieved.

5.3 AGNs that Fool Face Recognition
We next describe how we trained AGNs to generate inconspicuous, adversarial eye-
glasses that can mislead state-of-the-art DNNs trained to recognize faces. To do so, we
(1) collect a dataset of real eyeglasses; (2) select the architecture of the generator and
the discriminator, and instantiate their weights; (3) train DNNs that can evaluate the
attacks; and (4) set the parameters for the attacks.

5.3 AGNs that Fool Face Recognition 62

Figure 5.1: Examples of raw images of eyeglasses that we collected (left) and their
synthesis results (right).

5.3.1 Collecting a Dataset of Eyeglasses

A dataset of real eyeglass-frame designs is necessary to train the generator to create
real-looking attacks. We collected such a dataset using Google’s search API.2 To collect
a variety of designs, we searched for “eyeglasses” and synonyms (e.g., “glasses,” “eye-
wear”), sometimes modified by an adjective, including colors (e.g., “brown,” “blue”),
trends (e.g., “geek,” “tortoise shell”), and brands (e.g., “Ralph Lauren,” “Prada”). In
total, we made 430 unique API queries and collected 26,520 images.

The images we collected were not of only eyeglasses; e.g., we found images of cups,
vases, and logos of eyeglass brands. Some images were of eyeglasses worn by models or
on complex backgrounds. Such images would hinder the training process. Hence, we
trained a classifier to detect and keep only images of eyeglasses over white backgrounds
and not worn by models. Using 250 hand-labeled images, we trained a classifier that
identified such images with 100% precision and 65% recall. After applying it to all the
images in the dataset, 8,340 images remained. Manually examining a subset of these
images revealed no false positives.

Using images from this dataset, we could train a generator that can emit eye-
glasses of different patterns, shapes, and orientations. However, variations in shape
and orientation made such eyeglasses difficult to efficiently align to face images while
running Alg. 4. Therefore, we preprocessed the images in the dataset and transferred
the patterns from their frames to a fixed shape (the same used in Chap. 3, see Fig. 3.1),
which we could then easily align to face images. We then trained the generator to emit
images of eyeglasses with this particular shape, but with different colors and textures.
To transfer the colors and textures of eyeglasses to a fixed shape, we thresholded the
images to detect the areas of the frames. (Recall that the backgrounds of the images
were white.) We then used Efros and Leung’s texture-synthesis technique to synthesize
the texture from the frames onto the fixed shape [54]. Fig. 5.1 shows examples. Since
the texture synthesis process is nondeterministic, we repeated it twice per image. At
the end of this process, we had 16,680 images for training.

Since physical realizability is a requirement for our attacks, it was important that
the generator emitted images of eyeglasses that are printable. In particular, the colors of
the eyeglasses needed to be within the range our commodity printer (Epson XP-830)
could print. Therefore, we mapped the colors of the eyeglass frames in the dataset
into the color gamut of our printer. To model the color gamut, we printed an image
containing all 224 combinations of RGB triplets, captured a picture of that image, and
computed the convex hull of all the RGB triplets in the captured image. To make an
image of eyeglasses printable, we mapped each RGB triplet in the image to the closest
RGB triplet found within the convex hull.

2https://developers.google.com/custom-search/

https://developers.google.com/custom-search/

5.3 AGNs that Fool Face Recognition 63

5.3.2 Pretraining the Generator and the Discriminator

When training GANs, it is desirable for the generator to emit sharp, realistic, diverse
images. Emitting only a small set of images would indicate the generator’s function
does not approximate the underlying distribution well. To achieve these goals, and
to enable efficient training, we chose the Deep Convolutional GAN, a minimalistic
architecture with a small number of parameters [164]. In particular, this architecture
is known for its ability to train generators that can emit sharp, realistic images.

We then explored a variety of options for the generator’s latent space and out-
put dimensionality, as well as the number of weights in both G and D (via adjusting
the depth of filters). We eventually found that a latent space of [−1, 1]25 (i.e., 25-
dimensional vectors of real numbers between −1 and 1), and output images of 64×176
pixels produced the best-looking, diverse results. The final architectures of G and D
are reported in Fig. 5.2.

To ensure that attacks converged quickly, we initialized G and D to a state in
which the generator can already produce real-looking images of eyeglasses. To do so,
we pretrained G and D for 200 epochs and stored them to initialize later runs of Alg. 4.3
Moreover, we used Salimans et al.’s recommendation and trained D on soft labels [177].
Specifically, we trained D to emit 0 on samples originating from the generator, and 0.9
(instead of 1) on real examples. Fig. 5.3 presents a couple of eyeglasses emitted by the
pretrained generator.

5.3.3 DNNs for Face Recognition

We evaluated our attacks against four DNNs of two architectures. Two of the DNNs
were built on the Visual Geometry Group (VGG) neural network [159]—the same one
used in Chap. 3. The other two DNNs were built on the OpenFace neural network,
which uses the Google FaceNet architecture [3]. OpenFace’s main design consideration
is to provide high accuracy with low training and prediction times so that the DNN
can be deployed on mobile and IoT devices. Hence, the DNN is relatively compact,
with 3.74 million parameters, but nevertheless achieves near-human accuracy on the
LFW benchmark (92.92%).

We trained one small and one large face-recognition DNN for each architecture,
using the same data used in Chap. 3 (see Sec. 3.2.1). We call the small DNNs of
the VGG and OpenFace architectures VGG10 and OF10, as they were trained to
recognize 10 subjects. The large DNNs, termed VGG143 and OF143, were trained to
recognize 143 subjects. In all cases, three of the subjects that the DNNs were trained
to recognize (the author of the thesis and two collaborators) were available to us locally
for evaluating the attacks in the physical environment. We refer to them by SA, SB,
and SC, as in Sec. 3.3.2.

Training the VGG Networks As a reminder, the original VGG network takes a
224 × 224 aligned face image as input and produces a highly discriminative face de-
scriptor (i.e., vector representation of the face) of 4096 dimensions. Two descriptors
of images of the same person are designed to be closer to each other in Euclidean

3For training, we used the Adam optimizer [99] and set the learning rate to 2× 10−4, the batch
size to 260, β1 to 0.5, and β2 to 0.999.

5.3 AGNs that Fool Face Recognition 64

FC(25x7040)

DeConv(5x5x80)

Reshape(4x11x160)

Batchnorm
(7040)

ReLu

tanh

In	∈
−
1,1

%&

Batchnorm
(80)

ReLu

DeConv(5x5x40)

Batchnorm
(40)

ReLu

DeConv(5x5x20)

Batchnorm
(20)

ReLu

DeConv(5x5x3)

Out∈
−
1,1

'(×
*+'×

,

(a) G (generator).

In=
−
1,1

$%×
'($×

)

Conv(5x5x20)

Leaky	ReLu

Conv(5x5x40)

Batchnorm
(40)

Leaky	ReLu

Conv(5x5x80)

Batchnorm
(80)

Leaky	ReLu

Conv(5x5x160)

Batchnorm
(160)

Leaky	ReLu

Reshape(7040x1)

FC(7040x1)

Sigm
oid

Out∈
[0,1]

(b) D (discriminator).

Out∈10-sim
plex

In∈
ℝ
#$%&

FC(4096x10)

Softm
ax

(c) VGG10.

Out∈143-sim
plex

In∈
ℝ
#$%&

FC(4096x143)

Softm
ax

(d) VGG143.

Out∈10-sim
plex

In∈128-sphere

FC(128x12)

Softm
ax

tanh

FC(12x10)

(e) OF10.

Out∈143-sim
plex

In∈128-sphere

FC(128x286)

Softm
ax

tanh

FC(286x143)

(f) OF143.

Out∈2-sim
plex

In∈
ℝ
#$×

#$×
&#'

Conv(3x3x196)

Batchnorm
(196)

ReLu

M
axPool(2x2)

Conv(3x3x196)

Batchnorm
(196)

ReLu

Conv(3x3x196)

Batchnorm
(196)

ReLu

Reshape(196x1)

FC(196x2)

Softm
ax

(g) Detector

Figure 5.2: Architectures of the neural networks used in this work. Inputs that are
intermediate (i.e., received from feature-extraction DNNs) have dotted backgrounds.
Deconv refers to transposed convolution, and FC to fully connected layer. N -simplex
refers to the set of probability vectors of N dimensions, and the 128-sphere denotes the
set of real 128-dimensional vectors lying on the Euclidean unit sphere. All convolutions
and deconvolutions in G and D have strides and paddings of two. The detector’s
convolutions have strides of two and padding of one. The detector’s max-pooling layer
has a stride of two.

space than two descriptors of different people’s images. We again used transfer learn-
ing [229] to train DNNs for face recognition. Specifically, we used the descriptors to
train two simple neural networks that map face descriptors to probabilities over the
set of identities (thus the original DNNs effectively act as feature extractors).

5.3 AGNs that Fool Face Recognition 65

Figure 5.3: Examples of eyeglasses emitted by the generator (left) and similar eye-
glasses from the training set (right).

The architectures of the VGG-derived neural networks are provided in Fig. 5.2.
They consist of fully connected layers (i.e., linear separators) connected to a softmax
layer that turns the linear separators’ outputs into probabilities. We trained the net-
works by minimizing cross-entropy loss (Lossce) [64]. After training, we connected the
trained neural networks to the original VGG network to construct end-to-end DNNs
that map face images to identities.

An initial evaluation of VGG10 and VGG143 showed high performance. To ver-
ify that the DNNs cannot be easily misled, we tested them against naïve attacks by
attaching eyeglasses emitted by the pretrained (non-adversarial) generator to test im-
ages. We found that impersonations of randomly picked targets are unlikely—they oc-
cur with 0.79% chance for VGG10 and <0.01% for VGG143. However, we found that
dodging would succeed with non-negligible chance: 7.81% of the time against VGG10
and 26.87% against VGG143. We speculated that this was because the training sam-
ples for some subjects never included eyeglasses. To make the DNNs more robust,
we augmented their training data following adversarial training techniques [113]: for
each image initially used in training we added two variants with generated eyeglasses
attached. We also experimented with using more variants but found no additional
improvement. Also following Kurakin et al., we included 50% raw training images and
50% augmented images in each batch during training [113].

Evaluating VGG10 and VGG143 on held-out test sets after training, we found
that they achieved 100% and 98% accuracy, respectively. In addition, the success
of naïve dodging was at most 4.60% and that of impersonation was below 0.01%.
Finally, to maintain a high level of security, it is important to minimize the DNNs’
false positives [87]. Once again, we do so by setting a criteria on the DNNs’ output to
decide when it should be accepted. We were able to find thresholds for the probabilities
emitted by VGG10 and VGG143 such that their accuracies remained 100% and 98%,
while the FPRs of both DNNs were 0%. The performance of the DNNs is reported in
Table 5.1.

Training the OpenFace Networks The original OpenFace network takes a 96×96
aligned face image as input and outputs a face descriptor of 128 dimensions. Similar to
the VGG networks, the descriptors of images of the same person are close in Euclidean
space, while the descriptors of different people’s images are far. Unlike VGG, the
OpenFace descriptors lie on a unit sphere.

We again used transfer learning to train the OpenFace networks. We first attempted
to train neural networks that map the OpenFace descriptors to identities using architec-
tures similar to the ones used for the VGG DNNs. We found these neural networks to
achieve competitive accuracies. Similarly to the VGG DNNs, they were also vulnerable
to naïve dodging attempts, but unlike the VGG DNNs, straightforward data augmen-
tation did not improve their robustness. We believe this may stem from limitations of
classifying data on a sphere using linear separators.

5.3 AGNs that Fool Face Recognition 66

SR naïve SR naïve
Model acc. dodge impers. thresh. TPR FPR

VGG10 100% 3% 0% 0.92 100% 0%
VGG143 98% 5% 0% 0.82 98% 0%
OF10 100% 14% 1% 0.55 100% 0%
OF143 86% 22% <1% 0.91 59% 2%

Table 5.1: Performance of the face-recognition DNNs. We report the accuracy, the
success rate (SR) of naïve dodging and impersonation (likelihood of naïve attackers
to be misclassified arbitrarily or as a priori chosen targets), the threshold to balance
correct and false classifications, the true-positive rate (TPR; how often the correct class
is assigned a probability above the threshold), and the false-positive rate (FPR; how
often a wrong class is assigned a probability above the threshold).

To improve the robustness of the DNNs, we increased their depth by prepending a
fully connected layer followed by a hyperbolic-tangent (tanh) layer (see Fig. 5.2). This
architecture was chosen as it performed the best out of different ones we experimented
with. We also increased the number of images we augmented in training to 10 (per
image in the training set) for OF10 and to 100 for OF143. The number of images
augmented was selected such that increasing it did not further improve robustness
against naïve attacks. Similarly to the VGG networks, we trained with about 40 images
per subject, and included 50% raw images and 50% augmented images in training
batches.

We report the performance of the networks in Table 5.1. OF10 achieved 100% accu-
racy, while OF143 achieved 85.50% accuracy (comparable to Amos et al.’s finding [3]).
The OpenFace DNNs were more vulnerable to naïve attacks than the VGG DNNs.
For instance, OF10 failed against 14.10% of the naïve dodging attempts and 1.36%
of the naïve impersonation attempts. We believe that the lower accuracy and higher
susceptibility of the OpenFace DNNs compared to the VGG DNNs may stem from the
limited capacity of the OpenFace network induced by the small number of parameters.

Training an Attack Detector In addition to the face-recognition DNNs, we trained
a DNN to detect attacks that target the VGG networks following the proposal of Metzen
et al. [139] (see Sec. 2.3). We chose this detector because at the time of the work it was
one of the most effective detectors against imperceptible adversarial examples [30, 139].
We focused on VGG DNNs because no detector architecture was proposed for detecting
attacks against OpenFace-like architectures. To mount a successful attack when a
detector is deployed, it is necessary to simultaneously fool the detector and the face-
recognition DNN.

We used the architecture proposed by Metzen et al. (see Fig. 5.2). For best per-
formance, we attached the detector after the fourth max-pooling layer of the VGG
network. To train the detector, we used 170 subjects from the original dataset used by
Parkhi et al. for training the VGG network [159]. For each subject we used 20 images
for training. For each training image, we created a corresponding adversarial image
that evades recognition. We trained the detector for 20 epochs using the Adam opti-

5.4 Evaluation 67

mizer with the training parameters set to standard values (learning rate = 1× 10−4,
β1 = 0.99, β2 = 0.999) [99]. At the end of training, we evaluated the detector on
20 subjects who were not used in training, finding that it had 100% recall and 100%
precision.

5.3.4 Implementation Details

We used the Adam optimizer to update the weights of D and G when running Alg. 4.
As in pretraining, β1 and β2 were set to 0.5 and 0.999. We ran grid search to set
κ and the learning rate, and found that a κ = 0.25 and a learning rate of 5× 10−5

gave the best tradeoff between success in fooling the DNNs, inconspicuousness, and the
algorithm’s run time. The number of epochs was limited to at most one, as we found
that the results the algorithm returned when running longer were not inconspicuous.

The majority of our work was implemented in MatConvNet, a MATLAB toolbox
for convolutional neural networks [211]. The OpenFace DNN was translated from the
original implementation in Torch to MatConvNet. We released the implementation
online: https://github.com/mahmoods01/agns.

5.4 Evaluation
We extensively evaluated AGNs as an attack method. In Sec. 5.4.1 we show that AGNs
reliably generate successful dodging and impersonation attacks in a digital environ-
ment, even when a detector is used to prevent them. We show in Sec. 5.4.2 that these
attacks can also be successful in the physical domain. In Sec. 5.4.3, we demonstrate
universal dodging, i.e., generating a small number of eyeglasses that many subjects can
use to evade recognition. We test in Sec. 5.4.4 how well our attacks transfer between
models. Table 5.2 summarizes the combinations of domains the attacks were performed
in, the attack types considered, and what objectives were aimed or tested for in each
experiment. While more combinations exist, we attempted to experiment with the
most interesting combinations under computational and manpower constraints. (For
example, attacks in the physical domain require significant manual effort, and universal
attacks require testing with more subjects than is feasible to test with in the physical
domain.) In Sec. 5.4.5 we demonstrate that AGNs can generate eyeglasses that are
inconspicuous to human participants in a user study. Finally, in Sec. 5.4.6 we show
that AGNs are applicable to areas other than face recognition (specifically, by fooling
a digit-recognition DNN).

5.4.1 Attacks in the Digital Domain

In contrast to physically realized attacks, an attacker in the digital domain can exactly
control the input she provides to DNNs, since the inputs are not subject to noise added
by physically realizing the attack or capturing the image with a camera. Therefore,
our first step again is to verify that the attacker can successfully fool the DNNs in the
digital domain, as failure in the digital domain implies failure in the physical domain.

https://github.com/mahmoods01/agns

5.4 Evaluation 68

Domain Type Objectives
Robustness vs.

Sec. Dig. Phys. Untarg. Targ. Incons. Aug. Detect. Print. Pose Lum. Univ. Trans.

5.4.1 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3

3 3 3 3 3 3

5.4.2 3 3 3 3 3 3 3

3 3 3 3 3 3 3

5.4.3 3 3 3 3 3 3

5.4.4 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Table 5.2: For each experimental section, we mark the combinations of domains
(digital or physical) in which the attack was tested, the attack types (untargeted or
targeted) tested, and the objectives of the attack, chosen from inconspicuousness, ro-
bustness (against training-data augmentation, detection, printing noise, pose changes,
and luminance changes), universality, and transferability. Note that while we did not
explicitly design the attacks to transfer between architectures, we found that they
transfer relatively well; see Sec. 5.4.4.

Experiment Setup To evaluate the attacks in the digital domain, we followed a simi-
lar approach to Sec. 3.3.1. Particularly, we selected a set of subjects for each DNN from
the subjects the DNNs were trained on: 20 subjects selected at random for VGG143
and OF143 and all ten subjects for VGG10 and OF10. In impersonation attacks, the
targets were chosen at random. To compute the uncertainty in our estimation of suc-
cess, we repeated each attack three times, each time using a different image of the
attacker.

As baselines for comparison, we evaluated three additional attacks using the same
setup. The first attack is the one presented in Chap. 3. We refer to it by CCS16 ,
in reference to the conference the attack was published in. Similarly to before, We
ran the attack up to 300 iterations, starting from solid colors, and clipping the colors
of the eyeglasses to the range [0, 1] after each iteration to ensure that they lie in a
valid range. The second attack is the PGD attack of Madry et al. [129], additionally
constrained to perturb only the area covered by the eyeglasses. Specifically, we started
from eyeglasses with solid colors and iteratively perturbed them for up to 100 iterations,
while clipping the perturbations to have max-norm (i.e., L∞-norm) of at most 0.12. We
picked 100 and 0.12 as the maximum number of iterations and max-norm threshold,
respectively, as these parameters led to the most powerful attack in prior work [129].
The PGD attack can be roughly seen as a special case of the CCS16 attack, as the
two attacks follow approximately the same approach except that PGD focuses on a
narrower search space by clipping perturbations more aggressively to decrease their

5.4 Evaluation 69

perceptibility. As we show below, the success rate of PGD was significantly lower
than of CCS16 , suggesting that the clipping PGD performs may be too aggressive for
this application. Therefore, we evaluated a third attack, denoted ĈCS16 , in which
we clipped perturbations, but did so less aggressively than PGD . In ĈCS16 , we set
the number of iterations to 300, as in the CCS16 attack, and clipped perturbations
to have max-norm of at most 0.47. We selected 0.47 as the max-norm threshold as
it is the lowest threshold that led to success rates at fooling face recognition that are
comparable to CCS16 . In other words, this threshold gives the best chance of achieving
inconspicuousness without substantially sacrificing the success rates. To maximize
the success rates of the three attacks, we optimized only for the evasion objectives
(defined via Lossce), and ignored other objectives that are necessary to physically
realize the attacks (specifically, generating colors that can be printed by minimizing
NPS , and ensuring smooth transitions between neighboring pixels by minimizing TV ,
see Sec. 3.2).

To test whether a detector would prevent attacks based on AGNs, we selected all
ten subjects for VGG10 and 20 random subjects for VGG143, each with three images
per subject. We then tested whether dodging and impersonation can be achieved
while simultaneously evading the detector. To fool the detector along with the face-
recognition DNNs, we slightly modified the objective from Eqn. 5.3 to optimize the
adversarial generator such that the detector’s loss is increased. In particular, the loss
function we used was the difference between the probabilities of the correct class (either
“adversarial” or “non-adversarial” input) and the incorrect class. As the vanilla PGD ,
CCS16 , and ĈCS16 attacks either failed to achieve success rates comparable to AGNs
or produced more conspicuous eyeglasses (Sec. 5.4.5), we did not extend them to fool
the detector.

We again evaluated attacks via success rates. For dodging, we measured the per-
centage of attacks in which the generator emitted eyeglasses that (1) led the image
to be misclassified (i.e., the most probable class was not the attacker), and (2) kept
the probability of the correct class below 0.01 (much lower than the thresholds set
for accepting any of the DNNs’ classifications; see Table 5.1). For impersonation, we
considered an attack successful if the attacker’s image was classified as the target with
probability exceeding 0.92, the highest threshold used by any of the DNNs. When us-
ing the detector, we also required that the detector deemed the input non-adversarial
with probability higher than 0.5.

Experiment Results Table 5.3 summarizes the results of the digital-environment
experiments (without using an attack detector). All dodging attempts using AGNs
succeeded; Fig. 5.4 shows an example. As with dodging, all impersonation attempts
using AGNs against the small DNNs (VGG10 and OF10) succeeded. A few attempts
against the larger DNNs failed, suggesting that inconspicuous impersonation attacks
may be more challenging when the DNN recognizes many subjects, although attacks
succeeded at least 88% of the time.

Differently from AGNs, the success of PGD was limited—its success rates at dodg-
ing ranged from 37% to 85%, and its success rates at impersonation were below 13%.
This suggests that the clipping performed by PGD may be too aggressive. The CCS16
and ĈCS16 attacks achieved success rates comparable to AGNs at both dodging and

5.4 Evaluation 70

Dodging Impersonation
Model AGNs PGD ĈCS16 CCS16 AGNs PGD ĈCS16 CCS16

VGG10 100±0% 37±10% 100±0% 100±0% 100±0% 10±5% 100±0% 100±0%
VGG143 100±0% 53±9% 100±0% 100±0% 88±5% 3±2% 82±5% 98±2%
OF10 100±0% 43±11% 100±0% 100±0% 100±0% 13±7% 87±9% 100±0%
OF143 100±0% 85±7% 100±0% 100±0% 90±4% 11±4% 78±6% 88±4%

Table 5.3: Results of attacks in the digital environment. We report the the mean
success rate of attacks and the standard error when fooling the facial-recognition DNNs.

Figure 5.4: An example of digital dodging. Left: An image of actor Owen Wilson
(from the PubFig dataset [111]), correctly classified by VGG143 with probability 1.00.
Right: Dodging against VGG143 using AGN’s output (probability assigned to the
correct class <0.01).

impersonation. Unlike for AGNs, in this set of experiments the high success rates of the
CCS16 and ĈCS16 attacks were achieved by only attempting to dodge or imperson-
ate (i.e., fool the classifier), while ignoring other objectives, such as generating colors
which can be printed (via minimizing NPS). For physically realized attacks, evaluated
in Sec. 5.4.2, satisfying these additional objectives is necessary for the CCS16 and
ĈCS16 attacks to succeed; there, however, measurements suggest that AGNs capture
the inconspicuousness and realizability objectives more effectively.

As shown in Table 5.4 using a detector did not thwart the AGN attacks: success
rates for dodging and impersonation were similar to when a detector was not used.
However, using a detector reduced the inconspicuousness of attacks (see Sec. 5.4.5).

We further tested whether attackers can be more successful by using eyeglasses of
different shapes: we trained AGNs to generate eyeglasses of six new shapes and tested
them against VGG143 and OF143. Three of the new shapes achieved comparable
performance to the original shape (shown in Fig. 5.4), but the overall success rates
did not improve. Nevertheless, it would be useful to explore whether using variety of
eyeglass shapes can enhance the inconspicuousness of attacks in practice.

5.4.2 Attacks in the Physical Domain

Attackers in the physical domain do not have complete control over the DNN’s input:
Slight changes in the attacker’s pose, expression, distance from the camera, and illumi-
nation may dramatically change the concrete values of pixels. Practical attacks need

5.4 Evaluation 71

Model Dodging Impersonation

VGG10 100±0% 100±0%
VGG143 100±0% 90±4%

Table 5.4: The mean success rates and standard errors of dodging and impersonation
using AGNs when simultaneously fooling facial-recognition DNNs and a detector.

to be robust against such changes. We took three additional measures to make the
attacks more robust.

First, to train adversarial generators that emit images of eyeglasses that lead to
more than one of the attacker’s images to be misclassified, we used multiple images of
the attacker in training the generator. Namely, we set X in Alg. 4 to be a collection
of the attacker’s images. As a result, the generators learned to maximize LossF for
different images of the attacker.

Second, to make the attacks robust to changes in pose, we trained the adversarial
generator to minimize LossF over multiple images of the attacker wearing the eyeglasses.
To align the eyeglasses to the attacker’s face, we created and printed a 3d model of
eyeglasses with frames that have the same silhouette as the 2d eyeglasses emitted by
the generator (using code from GitHub [28]). We added tracking markers—specifically
positioned green dots—to the 3d-printed eyeglasses. The attacker wore the eyeglasses
when capturing training data for the generator. We then used the markers to find a
projective alignment, θx, of the eyeglasses emitted by the generator to the attacker’s
pose in each image. The generator was subsequently trained to minimize LossF

(
x +

θx(G(z))
)
for different images of the attacker (x ∈ X).

Third, to achieve robustness to varying illumination conditions, we modeled how
light intensity (luminance) affects eyeglasses and incorporated the models in AGN
training. Specifically, we used the Polynomial Texture Maps approach [132] to esti-
mate degree-3 polynomials that map eyeglasses’ RGB values under baseline luminance
to values under a specific luminance. In the forward pass of Alg. 4, before digitally
attaching eyeglasses to an attacker’s image of certain luminance, we mapped the eye-
glasses’ colors to match the image’s luminance. In the backward pass, the errors were
back-propagated through the polynomials before being back-propagated through the
generator to adjust its weights. In this way, the texture-map polynomials enabled us
to digitally estimate the effect of lighting on the eyeglasses.

Experiment Setup To evaluate the physically realized attacks, the subjects SA, SB,
and SC acted as attackers. Each subject attempted both dodging and impersonation
against each of the four DNNs (which were trained to recognize them, among others).
The data used for training and evaluating the physically realized attacks were collected
from a room with a ceiling light but with no windows on exterior walls using a Canon
T4i camera (similarly to Sec. 3.3.2).

In a first set of experiments, we evaluated the attacks under varied poses. To
this end, we followed a similar methodology to Sec. 3.3.2. Specifically, to train the
adversarial generators, we collected 45 images of each attacker (the set X in Alg. 4)
while he or she stood a fixed distance from the camera, kept a neutral expression,

5.4 Evaluation 72

and moved his or her head up-down, left-right, and in a circle. Each generator was
trained for at most one epoch, and training stopped earlier if the generator could emit
eyeglasses that, for dodging, led the mean probability of the correct class to fall below
0.005, or, for impersonation, led the mean probability of the target class to exceed
0.990. For impersonation, we picked the target at random per attack.

To physically realize the attacks, we printed selected eyeglass patterns created by
the generator (again, on Epson Ultra Premium Glossy paper using a commodity Epson
XP-830 printer) and affixed them to the 3d-printed eyeglasses. Since each generator can
emit a diverse set of eyeglasses, we (digitally) sampled 48 outputs (qualitatively, this
amount seemed to capture the majority of patterns that the generators could emit) and
kept the most successful one for dodging or impersonation in the digital environment
(i.e., the one that led to the lowest mean probability assigned the attacker or the highest
mean probability assigned to the target, respectively).

We evaluated the attacks by collecting videos of the attackers wearing the 3d-printed
eyeglasses with the adversarial patterns affixed to their front. Again, the attackers were
asked to stand a fixed distance from the camera, keep a neutral expression, and move
their heads up-down, left-right, and in a circle. We extracted every third frame from
each video. This resulted in 75 frames, on average, per attack. We then classified the
extracted images using the DNNs targeted by the attacks. For dodging, we measured
success by the fraction of frames that were classified as anybody but the attacker, and
for impersonation by the fraction of frames that were classified as the target. In some
cases, impersonation failed—mainly due to the generated eyeglasses not being realiz-
able, as many of the pixels had extreme values (close to RGB=[0,0,0] or RGB=[1,1,1]).
In such cases, we attempted to impersonate another (randomly picked) target.

We measured the head poses (i.e., pitch, yaw, and roll angles) of the attackers
in training images using a state-of-the-art tool [14]. On average, head poses covered
13.01◦ of pitch (up-down direction), 17.11◦ of yaw (left-right direction), and 4.42◦ of
roll (diagonal direction). This is similar to the mean difference in head pose between
pairs of images randomly picked from the PubFig dataset [111] (11.64◦ of pitch, 15.01◦
of yaw, and 6.51◦ of roll).

As a baseline to compare to, we repeated the dodging and impersonation attempts
using our attack from Chap. 3, referred to by CCS16 . Unlike experiments in the digital
domain, we did not evaluate variants of the CCS16 attack where additional clipping
is performed, as our experience in the digital domain showed that clipping harms the
success rate of attacks and fails to improve their inconspicuousness (see Sec. 5.4.5).

In a second set of experiments, we evaluated the effects of changes to luminance.
To this end, we placed a lamp (with a 150W incandescent light bulb) about 45◦ to the
left of the attacker, and used a dimmer to vary the overall illuminance between ∼110lx
and ∼850lx (comparable to difference between a dim corridor and a bright chain store
interior [12]). We crafted the attacks by training the generator on 20 images of the
attacker collected over five equally spaced luminance levels. In training the generator,
we used the polynomial texture models as discussed above. For impersonation, we used
the same targets as in the first set of experiments. We implemented the eyeglasses
following the same procedure as before, then collected 40 video frames per attack,
split evenly among the five luminance levels. In these experiments, the attackers again
stood a fixed distance from the camera, but did not vary their pose. For this set of

5.4 Evaluation 73

(a) (b) (c)

Figure 5.5: Examples of physically realized attacks. (a) SA (top) and SB (bot-
tom) dodging against OF143. (b) SC impersonating SE against VGG10. (c) SB

impersonating actor Brad Pitt (by Marvin Lynchard / CC BY 2.0 / cropped from
https://goo.gl/Qnhe2X) against VGG10.

experiments, we do not compare with our previous algorithm, as it was not designed
to achieve robustness to changing luminance, and informal experiments showed that it
performed poorly when varying the luminance levels.

Experiment Results Table 5.5 summarizes our results and Fig. 5.5 shows examples
of attacks in the physical environment.

In the first set of experiments we varied the attackers’ pose. Most dodging attempts
succeeded with all video frames misclassified. Even in the worst attempt, 81% of video
frames were misclassified. Overall, the mean probability assigned to the correct class
was at most 0.40, much below the thresholds discussed in Sec. 5.3.3. For imperson-
ation, one to four subjects had to be targeted before impersonations succeeded, with
an average of 68% of video frames (mis)classified as the targets in successful imper-
sonations. In two thirds of these attempts, >20% of frames were misclassified with
high confidence (again, using the thresholds from Sec. 5.3.3). This suggests that even
a conservatively tuned system would likely be fooled by some attacks.

We found that physical-domain evasion attempts using AGNs were significantly
more successful than attempts using the CCS16 algorithm. The mean success rate of
dodging attempts was 45% higher when using AGNs compared to prior work (97% vs.
67%; a paired t-test shows that the difference is statistically significant with p = 0.03).
The difference in success rates for impersonation was even larger. The mean success
rate of impersonation attempts was 126% higher using AGNs compared to prior work
(70% vs. 31%; paired t-test shows that the difference is statistically significant with
p < 0.01). Given these results, we believe that AGNs provide a better approach to test
the robustness of DNNs against physical-domain attacks than the CCS16 algorithm.

The second set of experiments shows that AGNs can generate attacks that are ro-
bust to changes in luminance. On average, the dodging success rate was 96% (with

https://goo.gl/Qnhe2X

5.4 Evaluation 74

Dodging results
DNN Subject AGNs p(sub.) CCS16 AGNs-L

VGG10 SA 97% 0.09 98% 100%
SB 96% 0.10 100% 100%
SC 100% 0.06 0% 93%

VGG143 SA 100% <0.01 87% 100%
SB 100% 0.03 82% 100%
SC 98% 0.17 0% 100%

OF10 SA 100% 0.01 100% 100%
SB 100% 0.01 100% 100%
SC 81% 0.40 0% 83%

OF143 SA 97% 0.05 97% 100%
SB 100% <0.01 99% 100%
SC 100% 0.09 36% 75%

Impersonation results
DNN Subject Target Attempts AGNs HC p(tar.) CCS16 AGNs-L

VGG10 SA Milla Jovovich 2 88% 0% 0.70 63% 100%
SB Brad Pitt 1 100% 96% 0.98 100% 100%
SC SE 1 100% 74% 0.93 0% 80%

VGG143 SA Ashton Kutcher 2 28% 0% 0.22 0% 0%
SB Daniel Radcliffe 2 3% 0% 0.04 0% 16%
SC Alicia Keys 2 89% 41% 0.73 0% 70%

OF10 SA Brad Pitt 2 65% 55% 0.58 43% 100%
SB SE 1 98% 95% 0.83 67% 38%
SC Brad Pitt 2 28% 23% 0.25 0% 50%

OF143 SA Aaron Eckhart 4 99% 25% 0.83 92% 100%
SB Eva Mendes 2 53% 39% 0.67 3% 9%
SC Carson Daly 1 60% 0% 0.41 0% 73%

Table 5.5: Summary of physical realizability experiments. For dodging (top), we
report the success rate of AGNs (percentage of misclassified video frames), the mean
probability assigned to the correct class (lower is better), the success rate of the CCS16
attack (Chap. 3), and the success rate of AGNs under luminance levels higher than
the baseline luminance level (AGNs-L). For impersonation (bottom), we report the
target (SE is a member of our group, an Asian female in the early 20s), the number
of targets attempted until succeeding, the success rate of AGNs (percentage of video
frames classified as the target), the fraction of frames classified as the target with high
confidence (HC; above the threshold which strikes a good balance between the true and
the false positive rate), the mean probability assigned to the target (higher is better),
the success rate of the CCS16 attack, and the success rate under varied luminance
levels excluding the baseline level (AGNs-L). Non-adversarial images of the attackers
were assigned to the correct class.

most attempts achieving 100% success rate), and the impersonation success rate was
61%. Both are comparable to success rates under changing pose and fixed luminance.
To evaluate the importance of modeling luminance to achieve robustness, we measured

5.4 Evaluation 75

the success rate of SC dodging against the four DNNs without modeling luminance
effects. This caused the average success rate of attacks to drop from 88% (the average
success rate of SC at dodging when modeling luminance) to 40% (marginally signifi-
cant according to a t-test, with p = 0.06). This suggests that modeling the effect of
luminance when training AGNs is essential to achieve robustness to luminance changes.

Last, we built a mixed-effects logistic regression model [160] to analyze how different
factors, and especially head pose and luminance, affect the success of physical-domain
attacks. In the model, the dependent variable was whether an image was misclassified,
and the independent variables accounted for the absolute value of pitch (up-down), yaw
(left-right), and roll (tilt) angles of the head in the image (measured with Baltrušaitis
et al.’s tool [14]); the luminance level (normalized to a [0,4] range); how close are the
colors of the eyeglasses printed for the attack to colors that can be produced by our
printer (measured via NPS , and normalized to a [0,1] range); the architecture of the
DNN attacked (VGG or OpenFace); and the size of the DNN (10 or 143 subjects). The
model also accounted for the interaction between angles and architecture, as well as
the luminance and architecture.

To train the model, we used all the images we collected to test the attack in the
physical domain. The model’s R2 is 0.70 (i.e., it explains 70% of the variance in
the data), indicating a good fit. The parameter estimates are shown in Table 5.6.
Luminance is not a statistically significant factor—i.e., the DNNs were equally likely to
misclassify the images under the different luminance levels we considered. In contrast,
the face’s pose has a significant effect on misclassification. For the VGG networks,
each degree of pitch or yaw away from 0◦ reduced the likelihood of success by 0.94, on
average. Thus, an attacker who faced the camera at a pitch or yaw of ±10◦ was about
0.53 times less likely to succeed than when directly facing the camera. Differently
from the VGG networks, for the OpenFace networks each degree of pitch away from
0◦ increased the likelihood of success by 1.12, on average. Thus, an attacker facing
the camera at a pitch of ±10◦ was about 3.10 times more likely to succeed than when
directly facing the camera. Overall, these results highlight the attacks’ robustness to
changes in luminance, as well as to small changes in pose away from frontal.

5.4.3 Universal Dodging Attacks

We next show that a small number of adversarial eyeglasses can allow successful dodging
for the majority of subjects, even when images of those subjects are not used in training
the adversarial generator.

We created the universal attacks by training the generator in Alg. 4 on a set of
images of different people. Consequently, the generator learned to emit eyeglasses that
caused multiple people’s images to be misclassified, not only one person’s. We found
that when the number of subjects was large, the generator started emitting conspicuous
patterns that did not resemble real eyeglasses. For such cases, we used Alg. 5, which
builds on Alg. 4 to train several adversarial generators, one per cluster of similar sub-
jects. Alg. 5 uses k-means++ [8] to create clusters of size sc. Clustering was performed
in Euclidian space using the features extracted from the base DNNs (4096-dimensional
features for VGG, and 128-dimensional features for OpenFace; see Sec. 5.3.3). The
result was a set of generators that create eyeglasses that, cumulatively, (1) led to the

5.4 Evaluation 76

Factor log(odds) odds p-value

(intercept) <0.01 1.00 0.96
is.143.subjects.dnn -0.48 0.62 <0.01
is.openface.dnn 6.34 568.78 <0.01
abs(pitch) -0.06 0.94 <0.01
abs(yaw) -0.06 0.94 <0.01
abs(roll) 0.01 1.01 0.80
luminance 0.04 1.04 0.12
non-printability -1.09 0.34 <0.01
is.openface.dnn:luminance 0.38 1.48 0.14
is.openface.dnn:abs(pitch) 0.18 1.19 <0.01
is.openface.dnn:abs(yaw) -0.08 0.92 0.06
is.openface.dnn:abs(roll) -0.62 0.54 <0.01

Table 5.6: Parameter estimates for the logistic regression model. Statistically signif-
icant factors are in boldface.

Algorithm 5: Universal attacks (given many subjects)
Input : X, G, D, F, dataset , Z, Ne, sb, κ, sc
Output: Gens // a set of generators

1 Gens ← {};
2 clusters ← clusters of size sc via k-means++;
3 for cluster ∈ clusters do
4 Ĝ← Alg1 (cluster ,G,D,F, dataset , Z,Ne, sb, κ);
5 Gens ← Gens ∪ {Ĝ};
6 return Gens;

misclassification of a large fraction of subjects and (2) appeared more inconspicuous
(as judged by members of our team) than when training on all subjects combined. The
key insight behind the algorithm is that it may be easier to find inconspicuous universal
adversarial eyeglasses for similar subjects than for vastly different subjects.

Experiment Setup We tested the universal attacks against VGG143 and OF143
only, as the other DNNs were trained with too few subjects to make meaningful con-
clusions. To train and evaluate the generators, we selected two images for each of the
subjects the DNNs were trained on—one image for training and one image for testing.
To make dodging more challenging, we selected the two images that were classified
correctly with the highest confidence by the two networks. Specifically, we selected
images such that the product of the probabilities both DNNs assigned to the correct
class was the highest among all the available images.

To explore how the number of subjects used to create the universal attacks affected
performance, we varied the number of subjects with whose images we trained the
adversarial generators. We averaged the success rate after repeating the process five

5.4 Evaluation 77

PPPPPPPPPFrom
To VGG10 OF10

VGG10 - 63.33%
OF10 10.00% -

PPPPPPPPPFrom
To VGG143 OF143

VGG143 - 88.33%
OF143 11.67% -

Table 5.7: Transferability of dodging in the digital domain. Each table shows how
likely it is for a generator used for dodging against one network (rows) to succeed
against another network (columns).

times (each time selecting a random set of subjects for training). When using ≥ 50
subjects for the universal attacks, we used Alg. 5 and set the cluster size to 10.

Additionally, we explored how the number of adversarial eyeglasses affected the suc-
cess of the attack. We did so by generating 100 eyeglasses from each trained generator
or set of generators and identifying the subsets (of varying size) that led the largest
fraction of images in the test set to be misclassified. Finding the optimal subsets is
NP-hard, and so we used an algorithm that provides a (1 − 1

e
)-approximation of the

optimal success rate [148].

Experiment Results Fig. 5.6 summarizes the results. Universal attacks are indeed
possible: generators trained to achieve dodging using a subset of subjects produced
eyeglasses that led to dodging when added to images of subjects not used in training.
The effectiveness of dodging depends chiefly on the number of subjects used in training
and, secondarily, the number of eyeglasses generated. In particular, training a generator
(set) on 100 subjects and using it to create 10 eyeglasses was sufficient to allow 92%
of remaining subjects to dodge against VGG143 and 94% of remaining subjects to
dodge against OF143. Even training on five subjects and generating five eyeglasses
was sufficient to allow more than 50% of the remaining users to dodge against either
network. OF143 was particularly more susceptible to universal attacks than VGG143
when a small number of subjects was used for training, likely due to its overall lower
accuracy.

5.4.4 Transferability of Dodging Attacks

Although this is not an explicit goal of our attacks, attackers with access to one DNN
but not another may attempt to rely on transferability to dodge against the second
DNN. In this section, we explore whether dodging against DNNs of one architecture
leads to successful dodging against DNNs of a different architecture.

Using the data from Sec. 5.4.1, we first tested whether dodging in the digital envi-
ronment successfully transferred between architectures (see Table 5.7). We found that
attacks against the OpenFace architecture successfully fooled the VGG architecture in
only a limited number of attempts (10–12%). In contrast, dodging against VGG led
to successful dodging against OpenFace in at least 63% of attempts.

Universal attacks seemed to transfer between architectures with similar success.
Using attacks created with 100 subjects and 10 eyeglasses from Sec. 5.4.3, we found
that 82% (±3% standard deviation) of attacks transferred from VGG143 to OF143,
and 26% (±4% standard deviation) transferred in the other direction.

5.4 Evaluation 78

subjects
0 1 5 10 50 100

s
u
c
c
e
s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1 1
2
5
10

(a) Universal dodging against VGG143.

subjects
0 1 5 10 50 100

s
u
c
c
e
s
s
 r

a
te

0

0.2

0.4

0.6

0.8

1 1
2
5
10

(b) Universal dodging against OF143.

Figure 5.6: Universal dodging against VGG143 and OF143. The x-axis shows the
number of subjects used to train the adversarial generators. When the number of
subjects is zero, a non-adversarial generator was used. The y-axis shows the mean
fraction of images misclassified (i.e., the dodging success rate). The whiskers on the
bars show the standard deviation of the success rate, computed by repeating each
experiment five times, each time with a different set of randomly picked subjects.
The color of the bars denotes the number of eyeglasses used, as shown in the legend.
We evaluated each attack using one, two, five, or ten eyeglasses. For example, the
rightmost bar in (b) indicates that an AGN trained with images of 100 subjects will
generate eyeglasses such that 10 pairs of eyeglasses will allow approximately 94% of
subjects to evade recognition. For ≤ 10 subjects, Alg. 4 was used to create the attacks.
For 50 and 100 subjects, Alg. 5 was used.

The transferability of dodging attacks in the physical environment between archi-
tectures followed a similar trend (see Table 5.8). Successful attacks transferred less
successfully from the OpenFace networks to the VGG networks (20–28%) than in the
other direction (44–52%).

5.4.5 A Study to Measure Inconspicuousness

Methodology To evaluate inconspicuousness of eyeglasses generated by AGNs we
carried out an online user study. Participants were told that we were developing an

5.4 Evaluation 79

PPPPPPPPPFrom
To VGG10 OF10

VGG10 - 43.84%
OF10 27.77% -

PPPPPPPPPFrom
To VGG143 OF143

VGG143 - 51.78%
OF143 19.86% -

Table 5.8: Transferability of dodging in the physical domain. We classified the frames
from the physically realized attacks using DNNs different from the ones for which the
attacks were crafted. Each table shows how likely it is for frames that successfully
dodged against one network (rows) to succeed against another network (columns).

algorithm for designing eyeglass patterns, shown a set of eyeglasses, and asked to label
each pair as either algorithmically generated or real. Each participant saw 15 “real”
and 15 attack eyeglasses in random order. All eyeglasses were the same shape and
varied only in their coloring. The “real” eyeglasses were ones used for pretraining the
AGNs (see Sec. 5.3.1). The attack eyeglasses were generated using either AGNs, the
CCS16 attack, or the ĈCS16 attack.

Neither “real” nor attack eyeglasses shown to participants were photo-realistically
or three-dimensionally rendered. So, we consider attack glasses to have been inconspic-
uous to participants not if they were uniformly rated as real (which even “real” glasses
were not, particularly when attack glasses were inconspicuous), but rather if the rate
at which participants deemed them as real does not differ significantly regardless of
whether they are “real” eyeglasses or attack eyeglasses.

Given two sets of eyeglasses (e.g., a set of attack glasses and a set of “real” glasses),
we tested whether one is more inconspicuous via the χ2 test of independence [134],
and conservatively corrected for multiple comparisons using the Bonferroni correction.
We compared the magnitude of differences using the odds-ratio measure: the odds of
eyeglasses in the first group being marked as real divided by the odds of eyeglasses in
the second group being marked as real. The higher (resp. lower) the odds ratios are
from 1, the higher (resp. lower) was the likelihood that eyeglasses from the first group
were selected as real compared to eyeglasses from the second group.

We recruited 301 participants in the U.S. through the Prolific crowdsourcing ser-
vice.4 Their ages ranged from 18 to 73, with a median of 29. 51% of participants
specified being female and 48% male (1% chose other or did not answer). Our study
took 3 minutes to complete on average and participants were compensated $1.50. The
study design was approved by Carnegie Mellon University’s ethics review board.

Results Table 5.9 and Fig. 5.7 show comparisons between various groups of eye-
glasses, as well as the percentage of time participants marked different eyeglasses as
real. “Real” eyeglasses were more realistic than AGN-generated ones (×1.71 odds ratio).
This is expected, given the additional objectives that attack eyeglasses are required to
achieve. However, AGNs were superior to other attacks. Both for digital and physi-
cal attacks, eyeglasses created by AGNs were more realistic than those created by the
CCS16 attack (×2.19 and ×1.59 odds ratio, respectively). Even limiting the max-norm
of the perturbations did not help—AGNs generated eyeglasses that were more likely
to be selected as real than the ĈCS16 attack (×2.24 odds ratio).

4https://prolific.ac

https://prolific.ac

5.4 Evaluation 80

Odds
Comparison (group 1 vs. group 2) ratio p-value

Real (61%) All AGNs (47%) 1.71 <0.01
AGNs digital (49%) CCS16 digital (31%) 2.19 <0.01
AGNs digital (49%) ĈCS16 digital (30%) 2.24 <0.01
AGNs physical (45%) CCS16 physical (34%) 1.59 <0.01
AGNs:
digital (49%) physical (45%) 1.19 0.26
digital (49%) digital with detector (43%) 1.28 0.02
digital dodging (52%) universal dodging (38%) 1.80 <0.01

Table 5.9: Relative realism of selected sets of eyeglasses. For each two sets compared,
we report in parentheses the fraction of eyeglasses per set that were marked as real by
study participants, the odds ratios between the groups, and the p-value of the χ2 test
of independence. E.g., odds ratio of 1.71 means that eyeglasses are ×1.71 as likely to
be selected as real if they are in the first set than if they are in the second.

percentile
10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 o

f t
im

es
 m

ar
ke

d
as

 r
ea

l

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Real

AGNs digital

AGNs physical

CCS2016 digitaldCCS2016 digital

CCS2016 physical

Figure 5.7: The percentage of times in which eyeglasses from different sets were
marked as real. The horizontal 60% line is highlighted to mark that the top half of
“real” eyeglasses were marked as real at least 60% of the time.

Perhaps most indicative of inconspicuousness in practice is that many AGN-generated
eyeglasses were as realistic as “real” eyeglasses. The most inconspicuous 26% of eye-
glasses emitted by AGNs for digital-environment attacks were on average deemed as
real as the most inconspicuous 50% of “real” eyeglasses; in each case participants marked
these eyeglasses as real >60% of the time. Physical attacks led to less inconspicuous
eyeglasses; however, the 14% most inconspicuous were still marked as real at least 60%
of the time (i.e., as real as the top 50% of “real” eyeglasses).

Other results match intuition—the more difficult the attack, the bigger the impact
on conspicuousness. Digital attack glasses that do not try to fool a detector are less

5.4 Evaluation 81

conspicuous than ones that fool a detector (×1.28 odds ratio), and individual dodging
is less conspicuous than universal dodging (×1.80 odds ratio). Digital attack glasses
had higher odds of being selected as real than physical attack glasses (×1.19 odds
ratio), but the differences were not statistically significant (p-value=0.26).

5.4.6 AGNs Against Digit Recognition

We next show that AGNs can be used in domains besides face recognition. Specifically,
we use AGNs to fool a state-of-the-art DNN for recognizing digits, trained on the
MNIST dataset [116], which contains 70,000 28×28-pixel images of digits.

Experiment Setup First, we trained a DNN for digit recognition using the architec-
ture and training code of Carlini and Wagner [31]. We trained the DNN on 55,000 digits
and used 5,000 for validation during training time. The trained DNN achieved 99.48%
accuracy on the test set of 10,000 digits. Next, we pretrained 10 GANs to generate
digits, one for each digit. Each generator was trained to map inputs randomly sampled
from [−1, 1]25 to 28x28-pixel images of digits. We again used the Deep Convolutional
GAN architecture [164]. Starting from the pretrained GANs, we trained AGNs using a
variant of Alg. 4 to produce generators that emit images of digits that simultaneously
fool the discriminator to be real and are misclassified by the digit-recognition DNN.

Unlike prior attacks, which typically attempted to minimally perturb specific benign
inputs to cause misclassification (e.g., [31, 55, 66, 157, 161, 221]), the attack we propose
does not assume that a benign input is provided, nor does it attempt to produce an
attack image minimally different from a benign image. Hence, a comparison with prior
attacks would not be meaningful.

Experiment Results The AGNs were able to output arbitrarily many adversarial
examples that appear comprehensible to human observers, but are misclassified by
the digit-recognition DNN (examples are shown in Fig. 5.8). As a test, we generated
5,004 adversarial examples that all get misclassified by the digit-recognition DNN.
The adversarial examples were produced by first generating 600,000 images using the
adversarial generators (60,000 per generator). Out of all samples, the ones that were
misclassified by the DNN (8.34% of samples) were kept. Out of these, only the digits
that were likely to be comprehensible by humans were kept: the automatic filtering
process to identify these involved computing the product of the discriminator’s output
(i.e., how realistic the images were deemed by the discriminator) and the probability
assigned by the digit-recognition DNN to the correct class, and keeping the 10% of
digits with the highest product.

Differently from traditional attacks on digit recognition (e.g., [31]), these attack
images are not explicitly designed for minimal deviation from specific benign inputs;
rather, their advantage is that they can be substantially different (e.g., in Euclidean
distance) from training images. We measured the diversity of images by computing the
mean Euclidean distance between pairs of digits of the same type; for attack images,
the mean distance was 8.34, while for the training set it was 9.25.

A potential way AGNs can be useful in this domain is adversarial training. For
instance, by augmenting the training set with the 5,004 samples, one can extend it

5.5 Discussion and Conclusion 82

Figure 5.8: An illustration of attacks generated via AGNs. Left: A random sample
of digits from MNIST. Middle: Digits generated by the pretrained generator. Right:
Digits generated via AGNs that are misclassified by the digit-recognition DNN.

by almost 10%. This approach can also be useful for visualizing inputs that would be
misclassified by a DNN, but are otherwise not available in the training or testing sets.

5.5 Discussion and Conclusion
In this chapter we contributed a methodology that we call adversarial generative nets
(AGNs) to generate adversarial examples to fool DNN-based classifiers while meeting
additional objectives. We focused on objectives imposed by the need to physically re-
alize artifacts that, when captured in an image, result in misclassification of the image.
Using the physical realization of eyeglass frames to fool face recognition as our driv-
ing example, we demonstrated the use of AGNs to improve robustness to changes in
imaging conditions (lighting, angle, etc.) and even to specific defenses; inconspicuous-
ness to human onlookers; and scalability in terms of the number of adversarial objects
(eyeglasses) needed to fool DNNs in different contexts. AGNs generated adversarial
examples that improved upon earlier work (including the work presented in Chap. 3)
in all of these dimensions, and did so using a general methodology.

Our work highlights a number of features of AGNs. They are flexible in their ability
to accommodate a range of objectives, including ones that elude precise specification,
such as inconspicuousness. In principle, given an objective that can be described
through a set of examples, AGNs can be trained to emit adversarial examples that
satisfy this objective. Additionally, AGNs are general in being applicable to various
domains, which we demonstrated by training AGNs to fool classifiers for face and (hand-
written) digit recognition. We expect that they would generalize to other applications,
as well. For example, one may consider using AGNs to fool DNNs for street-sign recog-
nition by training the generator to emit adversarial examples that resemble street-sign
images collected from the internet.

5.5 Discussion and Conclusion 83

One advantage of AGNs over other attacks (e.g., [66, 206]) is that they can generate
multiple, diverse, adversarial examples. Such diverse adversarial examples can be useful
for evaluating the robustness of models or learning to defend against attacks (e.g., by
incorporating them in adversarial training [113]).

Chapter 6

Mitigating Adversarial Examples via
Ensembles of Topologically
Manipulated Classifiers

6.1 Introduction
As discussed in Sec. 2.3, researchers have proposed several methods to mitigate the risks
of adversarial examples. For example, adversarial training, augments the training data
with correctly labeled adversarial examples (e.g., [92, 113, 129, 188]). The resulting
models are often more robust in the face of attacks than models trained via standard
methods. However, while defenses are constantly improving, they are still far from
perfect. Relative to standard models, defenses often reduce the accuracy on benign
samples. For example, methods to detect the presence of attacks sometimes erroneously
detect benign inputs as adversarial (e.g., [126, 127]). Moreover, defenses often fail to
mitigate a large fraction of adversarial examples that are produced by strong attacks
(e.g., [10]).

Inspired by n-version programming, this chapter proposes a new defense, termed
n-ML, that improves upon the state of the art in its ability to detect adversarial inputs
and correctly classify benign ones. Similarly to other ensemble classifiers [128, 204, 225],
an n-ML ensemble outputs the majority vote if more than a threshold number of DNNs
agree; otherwise the input is deemed adversarial. The key innovation in this work is
a novel method, topological manipulation, to train DNNs to achieve high accuracy
on benign samples while simultaneously classifying adversarial examples according to
specifications that are drawn at random before training. Because every DNN in an
ensemble is trained to classify adversarial examples differently than the other DNNs,
n-ML is able to detect adversarial examples because they cause disagreement between
the DNNs’ votes.

We evaluated n-ML using four datasets (MNIST [116], CIFAR10 [109], GTSRB [201]),
and VGG [159] and against L∞-, L2-, and AGN-based attacks in black-, grey-, and
white-box settings. Our findings indicate that n-ML can effectively mitigate adver-
sarial examples while achieving high benign accuracy. For example, for CIFAR10 in
the black-box setting, n-ML achieved 94.50% benign accuracy (vs. 95.38% for the

84

6.2 Technical Approach 85

best standard DNN) while preventing all adversarial examples with L∞-norm per-
turbation magnitudes of 8

255
created by PGD—the best known attack algorithm for

imperceptible L∞ attacks [129]. In comparison, the state-of-the-art defense (specif-
ically, AdvPGD [129, 188]) achieved 87.24% benign accuracy while being evaded by
14.02% of the adversarial examples. n-ML is also faster than most defenses that we
compared against. Specifically, even the slowest variant of n-ML is ×45.72 to ×199.46
faster at making inferences than other defenses for detecting the presence of attacks
(particularly, LID [127] and NIC [126]).

Our contributions can be summarized as follows:

• We propose topology manipulation, a novel method to train DNNs to classify
adversarial examples according to specifications that are selected at training time,
while also achieving high benign accuracy.

• Using topologically manipulated DNNs, we construct (n-ML) ensembles to defend
against adversarial examples.

• Our experiments using two perturbation types and four datasets in black-, grey-,
and white-box settings show that n-ML is an effective and efficient defense. n-ML
roughly retains the benign accuracies of state-of-the-art DNNs, while providing
more resilience to attacks than the best defenses known to date, and making
inferences faster than most.

We next present the technical details behind n-ML and topology manipulation
(Sec. 6.2). Thereafter, we describe the experiments that we conduct and their results
(Sec. 6.3 and Sec. 6.4). We close the chapter with a discussion (Sec. 6.5) and a conclu-
sion (Sec. 6.6).

6.2 Technical Approach
Here we detail our methodology. We first briefly review the threat model. Subse-
quently, we present a novel technique, termed topology manipulation, which serves as a
cornerstone for training DNNs that are used as part of the n-ML defense. Last, we de-
scribe how to construct an n-ML defense via an ensemble of topologically manipulated
DNNs.

6.2.1 Threat Model

Our proposed defense aims to mitigate attacks in all settings: black- grey-, and white-
box. In the black-box setting, the attacker attempts a non-interactive attack by trans-
ferring adversarial examples from standard surrogate models to evade classification. In
the grey-box setting, the attacker is aware of the use of the defense and attempts to
transfer adversarial examples that are produced against a surrogate defended model.
In the white-box setting, the attacker can adapt gradient-based white-box attacks (e.g.,
PGD) to evade the classifier and the defense combined.1 We do not consider interactive

1For clarity, we distinguish the classifier from the defense. However, in certain cases (e.g., for n-ML
or adversarial training) they are inherently inseparable.

6.2 Technical Approach 86

u

v
x

u

v
x

Figure 6.1: An illustration of topology manipulation. Left: In a standard DNN,
perturbing the benign sample x in the direction of u leads to misclassification as blue
(zigzag pattern), while perturbing it in the direction of v leads to misclassification
as red (diagonal stripes). Right: In the topologically manipulated DNN, direction u
leads to misclassification as red, while v leads to misclassification as blue. The benign
samples (including x) are correctly classified in both cases (i.e., high benign accuracy).

attacks that query models in a black-box setting (e.g., [23, 26, 35, 85]). These attacks
are generally weaker than the white-box attacks that we do consider.

6.2.2 Topologically Manipulating DNNs

The main building block of the n-ML defense is a topologically manipulated DNN—a
DNN that is manipulated at training time to achieve certain topological properties
with respect to adversarial examples. Specifically, a topologically manipulated DNN is
trained to satisfy two objectives: 1) obtaining high classification accuracy on benign
inputs; and 2) misclassifying adversarial inputs following a certain specification. The
first objective is important for constructing a well-performing DNN to solve the classi-
fication task at hand. The second objective aims to change the adversarial directions
of the DNN such that an adversarial perturbation that would normally lead a benign
input to be misclassified as class ct by a regularly trained DNN would likely lead to
misclassification as class ĉt (6= ct) by the topologically manipulated DNN. Fig. 6.1 il-
lustrates the idea of manipulating the topology of a DNN via an abstract example,
while Fig. 6.2 gives a concrete example.

To train a topologically manipulated DNN, two datasets are used. The first dataset,
D, is a standard dataset. It contains pairs (x, cx) of benign samples, x, and their true
classes, cx. The second dataset, D̃, contains adversarial examples. Specifically, it
consists of pairs (x̃, ct) of targeted adversarial examples, x̃, and the target classes, ct.
These adversarial examples are produced against reference DNNs that are trained in a
standard manner (e.g., to decrease cross-entropy loss, Lossce). Samples in D are used
to train the DNNs to satisfy the first objective (i.e., achieving high benign accuracy).
Samples in D̃, on the other hand, are used to topologically manipulate the adversarial
directions of DNNs.

More specifically, to specify the topology of the trained DNN, we use a derange-
ment (i.e., a permutation with no fixed points), d, that is drawn at random over the

6.2 Technical Approach 87

(a) (b) (c)

Figure 6.2: A concrete example of topology manipulation. The original image of a
horse (a) is adversarially perturbed to be misclassified as a bird (b) and as a ship (c) by
standard DNNs. The perturbations, which are limited to L∞-norm of 8

255
, are shown

after multiplying ×10. We trained a topologically manipulated DNN to misclassify (b)
as a ship and (c) as a bird, while classifying the original image correctly.

number of classes, m. This derangement specifies that an adversarial example x̃ in D̃
that targets class ct should be misclassified as d[ct] (6= ct) by the topologically manipu-
lated DNN. For example, for ten classes (i.e., m = 10), the derangement may look like
d = [1, 6, 7, 0, 2, 8, 9, 3, 5, 4]. This derangement specifies that adversarial examples tar-
geting class 0 should be misclassified as class d[0] = 1, ones targeting class 1 should be
misclassified as class d[1] = 6, and so on. For m classes, the number of derangements
the we can draw from is known as the subfactorial (denoted by !m), and is defined
recursively as !m = (m − 1)(!(m − 1)+!(m − 2)), where !2 = 1 and !1 = 0. The sub-
factorial grows almost as quickly as the factorial m! (i.e., the number of permutations
over a group of size m).

We specify the topology using derangements rather than permutations that may
have fixed points because if d contained fixed points, there would exist a class ct such
that d[ct] = ct. In such case, the DNN would be trained to misclassify adversarial
examples that target ct into ct, which would not inhibit an adversary targeting ct.
Such behavior is undesirable.

We use the standard Lossce to train topologically manipulated DNNs. Formally,
the training process minimizes:

1

|D|
∑

(x,cx)∈D

Lossce(x, cx) +
λ

|D̃|

∑
(x̃,ct)∈D̃

Lossce(x̃, d[ct]) (6.1)

While minimizing the leftmost term increases the benign accuracy (as is usual in stan-
dard training processes), minimizing the rightmost term manipulates the topology of
the DNN (i.e., forces the DNN to misclassify x̃ as d[ct] instead of as ct). The param-
eter λ is a positive real number that balances the two objectives. We tune it via a
hyperparameter search.

Although topologically manipulated DNNs aim to satisfy multiple objectives, it is
important to point out that training them does not require significantly more time
than for standard DNNs. For training, one first needs to create the dataset D̃ that
contains the adversarial examples. This needs to be done only once, as a preprocessing
phase. Once D̃ is created, training a topologically manipulated DNN takes the same
amount of time as training a standard DNN.

6.3 Evaluation Against Lp Attacks 88

6.2.3 n-ML: An Ensemble-Based Defense

As previously mentioned, n-ML is inspired by n-version programming. While n inde-
pendent, or diversified, programs are used in an n-version programming defense, an
n-ML defense contains an ensemble of n (≥2) topologically manipulated DNNs. As
explained above, all the DNNs in the n-ML ensemble are trained to behave identically
for benign inputs (i.e., to classify them correctly), while each DNN is trained to fol-
low a different specification for adversarial examples. This opens an opportunity to 1)
classify benign inputs accurately; and 2) detect adversarial examples.

In particular, to classify an input x using an n-ML ensemble, we compute the
output of all the DNNs in the ensemble on x. Then, if the number of DNNs that agree
on a class is above or equal to a threshold τ , the input is classified to the majority
class. Otherwise, the n-ML ensemble would abstain from classification and the input
would be marked as adversarial. Formally, denoting the individual DNNs’ classification
results by the multiset C = {Fi(x)|1 ≤ i ≤ n}, the n-ML classification function, F, is
defined as:

F(x) =

{
majority(C), if |{c ∈ C|c = majority(C)}| ≥ τ

abstain, otherwise

Of course, increasing the threshold increases the likelihood of detecting adversarial
examples (e.g., an adversarial example is less likely to be misclassified as the same
target class ct by all the n DNNs than by n − 1 DNNs). In other words, increasing τ
decreases attacks’ success rates. At the same time, increasing the threshold harms the
benign accuracy (e.g., the likelihood of n DNNs to emit cx is lower than the likelihood
of n− 1 DNNs to do so). In practice, we set τ to a value ≥ dn+1

2
e, to avoid ambiguity

when computing the majority vote, and ≤ n, as the benign accuracy is 0 for τ > n.
Similarly to n-version programming, where the defense becomes more effective when

the constituent programs are more independent and diverse [13, 34, 46], an n-ML
defense is more effective at detecting adversarial examples when the DNNs are more
independent. Specifically, if two DNNs i and j (i 6= j) are trained with derangements di
and dj, respectively, and we are not careful enough, there might exist a class ct such that
di[ct] = dj[ct]. If so, the two DNNs are likely to classify adversarial examples targeting
ct in the same manner, thus reducing the defense’s likelihood to detect attacks. To
avoid such undesirable cases, we train the n-ML DNNs (simultaneously or sequentially)
while attempting to avoid pairs of derangements that map classes in the same manner
to the greatest extent possible. More concretely, if n is lower than the number of
classes m, then we draw n derangements that disagree on all indices (i.e., ∀i 6= j, ∀ct,
di[ct] 6= dj[ct]). Otherwise, we split the DNNs to groups of m − 1 (or smaller) DNNs,
and for each group we draw derangements that disagree on all indices. For a group of
n DNNs, n < m, we can draw

∏n
i=1!(m− i + 1) derangements such that every pair of

derangements disagrees on all indices.

6.3 Evaluation Against Lp Attacks
In line with prior work (e.g., [126, 127, 129]), in this section we describe how we
evaluated n-ML’s capacity to defend against L∞ (mainly) and L2 (as a proof concept)

6.3 Evaluation Against Lp Attacks 89

attacks. We initially present the datasets and the standard DNN architectures that we
used. Then we describe how we trained individual topologically manipulated DNNs to
construct n-ML ensembles, and the extent to which they met the training objectives.
We close the section with experiments to evaluate the n-ML defense in various settings
against L∞ and L2. We ran our experiments with Keras [96] and TensorFlow [1].

6.3.1 Datasets

We used three popular datasets to evaluate n-ML and other defenses against the Lp
attacks: MNIST [116], CIFAR10 [109], and GTSRB [201]. MNIST is a dataset of
28×28 pixel images of digits (i.e., ten classes). It contains 70,000 images in total, with
60,000 images intended for training and 10,000 intended for testing. We set aside 5,000
images from the training set for validation. CIFAR10 is a dataset of 32×32-pixel images
of ten classes: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. The dataset contains 50,000 images for training and 10,000 for testing. We
set aside 5,000 images from the training set for validation. Last, GTSRB is a dataset
containing traffic signs of 43 classes. The dataset contains 39,209 training images and
12,630 test images. We used 1,960 images that we set aside from the training set for
validation. Images in GTSRB vary in size between 15 × 15 and 250 × 250. Following
prior work [119], we resized the images to 48× 48.

The three datasets have different properties that made them especially suitable for
evaluating n-ML. MNIST relatively has a few classes, thus limiting the set of derange-
ments that we could use for topology manipulation for high n values. At the same time,
standard DNNs achieve high classification accuracy on MNIST (∼99% accuracies are
common), hence increasing the likelihood that DNNs in the ensemble would agree on
the correct class for benign inputs. CIFAR10 also relatively has a few classes. How-
ever, differently from MNIST, even the best performing DNNs do not surpass ∼95%
classification accuracy on CIFAR10. Consequently, the likelihood that a large number
n of DNNs in an ensemble would achieve consensus may be low (e.g., an ensemble
consisting of n = 5 DNNs with 95% accuracy each that incur independent errors could
have benign accuracy as low as 77% if we require all DNNs to agree). In contrast,
GTSRB contains a relatively high number of classes, and standard DNNs often achieve
high classification accuracies on this dataset (98%–99% accuracies are common). As
a result, there is a large space from which we could draw derangements for topology
manipulation, and we had expected high benign accuracies from n-ML ensembles.

6.3.2 Standard DNNs

The DNNs that we used were based on standard architectures. We constructed the
DNNs either exactly the same way as prior work or reputable public projects (e.g.,
by the Keras team [97]) or by modifying prior DNNs via a standard technique. In
particular, we modified certain DNNs following the work of Springenberg et al. [198],
who found that it is possible to construct simple, yet highly performing, DNNs by
removing pooling layers (e.g., max- and average-pooling) and increasing the strides of
convolutional operations.

6.3 Evaluation Against Lp Attacks 90

Dataset # Architecture Acc.

MNIST

1 Convolutional DNN [31] 99.42%
2 Convolutional DNN [129] 99.28%
3 Convolutional DNN [31] w/o pooling [198] 99.20%
4 Convolutional DNN [97] 99.10%
5 Convolutional DNN [129] w/o pooling [198] 99.10%
6 Multi-layer perceptron [98] 98.56%

CIFAR10

1 Wide-ResNet-22-8 [230] 95.38%
2 Wide-ResNet-28-10 [230] 95.18%
3 Wide-ResNet-16-10 [230] 95.06%
4 Wide-ResNet-28-8 [230] 94.88%
5 Wide-ResNet-22-10 [230] 94.78%
6 Wide-ResNet-16-8 [230] 94.78%

GTSRB

1 Convolutional DNN [119] 99.46%
2 Same as 1, but w/o first branch [119] 99.56%
3 Same as 1, but w/o pooling [198] 99.11%
4 Same as 1, but w/o second branch [119] 99.08%
5 Convolutional DNN [208] 99.00%
6 Convolutional DNN [187] 98.07%

Table 6.1: The DNN architectures that we used for the different datasets. The DNNs’
accuracies on the test sets of the corresponding datasets (after standard training) are
reported to the right.

For each dataset, we trained six DNNs of different architectures—a sufficient num-
ber of DNNs to allow us to evaluate n-ML and perform attacks via transferability from
surrogate ensembles [123] while factoring out the effect of architectures (see Sec. 6.3.3
and Sec. 6.3.4). The MNIST DNNs were trained for 20 epochs using the Adadelta opti-
mizer with standard parameters and a batch size of 128 [97, 231]. The CIFAR10 DNNs
were trained for 200 epochs with data augmentation (e.g., image rotation and flipping)
and training hyperparameters set identically to prior work [230]. The GTSRB DNNs
were trained with the Adam optimizer [99], with training hyperparameters and aug-
mentation following prior work [119, 187, 208]. Table 6.1 reports the architectures and
performance of the DNNs. In all cases, the DNNs achieved comparable performance
to prior work.

6.3.3 Evaluating Individual Topologically Manipulated DNNs

Now we describe how we trained individual topologically manipulated DNNs and report
on their performance. Later, in Sec. 6.3.4, we report on the performance of the n-ML
ensembles.

Training When training topologically manipulated DNNs, we aimed to minimize the
loss described in Eqn. 6.1. To this end, we modified the training procedures that we
used to train the standard DNNs in three ways:

6.3 Evaluation Against Lp Attacks 91

1. We extended each batch of benign inputs with the same number of adversarial
samples (x̃, ct) ∈ D̃ and specified that x̃ should be classified as d[ct].

2. In certain cases, we slightly increased the number of training epochs to improve
the performance of the DNNs.

3. We avoided data augmentation for GTSRB, as we found it to harm the accuracy
of (topologically manipulated) DNNs on benign inputs.

To set λ (the parameter that balances the DNN’s benign accuracy and the success
of topology manipulation, see Eqn. 6.1), we performed a hyperparameter search. We
experimented with values in {0.1, 0.5, 1, 2, 10} to find the best trade-off between the
n-ML ensembles’ benign accuracy and their ability to mitigate attacks. We found that
λ = 2 achieved the highest accuracies at low attack success-rates.

To train the best-performing n-ML ensemble, one should select the best performing
DNN architectures to train topologically manipulated DNNs. However, since the goal
of this chapter is to evaluate a defense, we aimed to give the attacker the advantage to
assess the resilience of the defense in a worst-case scenario (e.g., so that the attacker
could use the better held-out DNNs as surrogates in transferability-based attacks).
Therefore, we selected the DNN architectures with the lower benign accuracy to train
topologically manipulated DNNs. More specifically, for each dataset, we trained n-ML
ensembles by selecting round robin from the architectures shown in rows 4–6 from
Table 6.1.

Constructing a dataset of adversarial examples, D̃, is a key part of training topo-
logically manipulated DNNs. As we aimed to defend against attacks with bounded
L∞-norms, we used the corresponding PGD attack to produce adversarial examples:
For each training sample x of class cx, we produced m − 1 adversarial examples, one
targeting every class ct 6= cx. Moreover, we produced adversarial examples with pertur-
bations of different magnitudes to construct n-ML ensembles that could resist attacks
of varied strengths. For MNIST, where attacks of magnitudes ε ≤ 0.3 are typically con-
sidered [129], we used ε ∈ {0.1, 0.2, 0.3, 0.4}. For CIFAR10 and GTSRB, where attacks
of magnitudes ε ≤ 8

255
are typically considered [129, 154], we used ε ∈ { 2

255
, 4
255
, 6
255
, 8
255
}.

(Thus, in total, |D̃| = 4×(m−1)×|D|.) We ran PGD for 40 iterations, since prior work
found that his leads to successful attacks [129, 188]. Additionally, to avoid overfitting
to the standard DNNs that were used for training, we used state-of-the-art techniques
to enhance the transferability of the adversarial examples, both by making the exam-
ples invariant to spatial transformations [51, 224] and by producing them against an
ensemble of models [123, 209]—three standard DNNs of architectures 4–6.

For each dataset, we trained a total of 18 topologically manipulated DNNs. De-
pending on the setting, we use a different subset of the DNNs to construct n-ML
ensembles (see Sec. 6.3.4). The DNNs were split into two sets of nine DNNs each (< m
for MNIST and CIFAR10), such that the derangements of every pair of DNNs in the
same set disagreed on all indices.

Results Each topologically manipulated DNN was trained with two objectives in
mind: classifying benign inputs correctly (i.e., high benign accuracy) and classifying
adversarial examples as specified by the derangement drawn at training time. Here

6.3 Evaluation Against Lp Attacks 92

Standard DNNs
Dataset Acc. TSR

MNIST 99.30%±0.09% 43.05%±7.97%
CIFAR10 95.21%±0.13% 98.57%±0.66%
GTSRB 99.38%±0.19% 20.17%±1.48%

Topologically manipulated DNNs
Dataset Acc. TSR TSR h/o MSR MSR h/o

MNIST 98.66%±0.42% <0.01% 6.82%±2.45% 99.98%±0.02% 53.23%±14.94%
CIFAR10 92.93%±0.39% <0.01% <0.01% 99.98%±0.02% 99.99%±0.01%
GTSRB 96.99%±1.45% 1.20%±0.27% 1.35%±0.27% 52.86%±9.05% 48.26%±4.68%

Table 6.2: The performance of topologically manipulated DNNs compared to standard
DNNs. For standard DNNs (top), we report the average and standard deviation of the
(benign) accuracy and the targeting success rate (TSR). TSR is the rate at which the
DNN emited the target class on a transferred adversarial example. For topologically
manipulated DNNs (bottom), we report the average and standard deviation of the
accuracy, the TSR, and the manipulation success rate (MSR). MSR is the rate at
which adversarial examples were classified as specified by the derangements drawn at
training time. TSR and MSR are reported for adversarial examples produced against
the same DNNs used during training or ones produced against held-out (h/o) DNNs.

we report on the extent to which the DNNs we trained met these objectives. Note
that these DNNs were not meant to be used individually, but instead in the ensembles
evaluated in Sec. 6.3.4.

To measure the benign accuracy, we classified the original (benign) samples from the
test sets of datasets using the 18 topologically manipulated DNNs as well as the (better-
performing) standard DNNs that we held out from training topologically manipulated
DNNs (i.e., architectures 1–3). Table 6.2 reports the average and standard deviation of
the benign accuracy. Compared to the standard DNNs, the topologically manipulated
ones had only slightly lower accuracy (0.64%–2.39% average decrease in accuracy).
Hence, we can conclude that topologically manipulated DNNs were accurate.

Next, we measured the extent to which topology manipulation is successful. To
this end, we computed adversarial examples for the DNNs used to train topologically
manipulated DNNs (i.e., architectures 4–6) or DNNs held out from training (i.e., ar-
chitectures 1–3). Again, we used PGD and techniques to enhance transferability to
compute the adversarial examples. As in prior work, we set ε = 0.3 for MNIST and
ε = 8

255
for CIFAR10 and GTSRB, and we ran PGD for 40 iterations. For each benign

sample, x, we created m − 1 corresponding adversarial examples, one targeting every
class ct 6= cx. To reduce the computational load, we use a random subset of benign
samples from the test sets: 1024 samples for MNIST and 512 samples for the other
datasets.

For constructing robust n-ML ensembles, the topologically manipulated DNNs
should classify adversarial examples as specified during training, or, at least, differ-
ently than the adversary anticipates. We estimated the former via the manipulation

6.3 Evaluation Against Lp Attacks 93

success rate (MSR)—the rate at which adversarial examples were classified as specified
by the derangements drawn at training time—while we estimated the latter via the
targeting success rate (TSR)—the rate at which adversarial examples succeeded at be-
ing misclassified as the target class. A successfully trained topologically manipulated
DNN should obtain a high MSR and a low TSR.

Table 6.2 presents the average and standard deviation of TSRs and MSRs for topo-
logically manipulated DNNs, as well as the TSRs for standard DNNs. One can immedi-
ately see that targeting was much less likely to succeed for a topologically manipulated
DNN (average TSR≤6.82%) than for a standard DNN (average TSR≥20.17%, and as
high as 98.57%). In fact, across all datasets and regardless of whether the adversarial
examples were computed against held-out DNNs, the likelihood of targeting to succeed
for standard DNNs was ×6.31 or higher than for topologically manipulated DNNs.
This confirms that the adversarial directions of topologically manipulated DNNs were
vastly different than those of standard DNNs. Furthermore, as reflected in the MSR
results, we found that topologically manipulated DNNs were likely to classify adver-
sarial examples as specified by their corresponding derangements. Across all datasets,
and regardless of whether the adversarial examples were computed against held-out
DNNs or not, the average likelihood of topologically manipulated DNNs to classify ad-
versarial examples according to specification was ≥48.26%. For example, an average of
99.99% of the adversarial examples produced against the held-out DNNs of CIFAR10
were classified according to specification by the topologically manipulated DNNs.

In summary, the results indicate that the topologically manipulated DNNs satisfied
their objectives to a large extent: they accurately classified benign inputs, and their
topology with respect to adversarial directions was different than that of standard
DNNs, as they often classified adversarial examples according to the specification that
was selected at training time.

6.3.4 Evaluating n-ML Ensembles

Now we describe our evaluation of n-ML ensembles. We begin by describing the ex-
periment setup and reporting the benign accuracy of ensembles of various sizes and
thresholds. We then present on experiments to evaluate n-ML ensembles in various
settings and compare n-ML against other defenses. We finish with an evaluation of the
time overhead incurred when deploying n-ML for inference.

6.3.4.1 Setup

The n-ML ensembles that we constructed were composed of the topologically manipu-
lated DNNs described in the previous section. Particularly, we constructed ensembles
containing five (5-ML), nine (9-ML), or 18 (18-ML) DNNs, as we found ensembles of
certain sizes to be more suitable than others at balancing benign accuracy, security,
and the time it takes to make inferences in different settings. For the number of vari-
ants n ≤ 9, we selected DNNs whose derangements disagreed in all indices for the
ensembles. When n = 18, we selected all the DNNs. Note that since GTSRB contains
a large number of classes (m = 43), we could train 18 DNNs with derangements that
disagreed on all indices. However, we avoided doing so to save compute cycles, as

6.3 Evaluation Against Lp Attacks 94

the DNNs that we trained performed well despite having derangements that agreed on
certain indices.

Other Defenses We compared n-ML with three state-of-the-art defenses: AdvPGD [129,
188], LID [127], and NIC [126].

AdvPGD and LID use adversarial examples at training time; we set the magnitude
of the L∞-norm perturbations to ε = 0.3 to produce adversarial examples for MNIST,
and to ε = 8

255
for CIFAR10 and GTSRB, as these are typical attack magnitudes that

defenses attempt to prevent (e.g., [129, 154]).
For AdvPGD , we implemented and used the free adversarial training method of

Shafahi et al. [188], which adversarially trains DNNs in the same amount of time as
standard training. We used AdvPGD to train four defended DNNs for each dataset—
one to be used by the defender, and three to be used for transferring attacks in the
grey-box setting (see below). To give the defense an advantage, we used the best
performing architecture for the defender’s DNN (architecture 1 from Table 6.1), and
the least performing architectures for the attacker’s DNNs (architectures 4–6). For
CIFAR10, as the DNN that we obtained after training did not perform as well as prior
works’, we use the adversarially trained DNN released by Madry et al. [129] as the
defender’s DNN.

For training LID detectors, we used the implementation that was published by
the authors [127]. As described in Sec. 2.3, LID detectors compute LID statistics for
intermediate representations of inputs and feeds the statistics to a logistic regression
classifier to detect adversarial examples. The logistic regression classifier is trained
using LID statistics of benign samples, adversarial examples, and noisy variants of
benign samples (created by adding non-adversarial Gaussian noise). We tuned the
amount of noise for best performance (i.e., highest benign accuracy and detection
rate of adversarial examples). For CIFAR10 and GTSRB, we trained LID detectors
for DNNs of architecture 1. For MNIST, we trained a LID detector for the DNN
architecture that was used in the original work—architecture 4.

Using code that we obtained directly from the authors, we trained two NIC de-
tectors per dataset—one to be used by the defender (in all settings), and one by the
attacker in the grey-box setting. The defender’s detectors were trained for DNNs of
the same architectures as for LID . For the attacker, we trained detectors for DNNs of
architectures 1, 4, and 2, for MNIST, CIFAR10, and GTSRB, respectively. We selected
the attackers’ DNN architectures arbitrarily, and expect that other architectures would
perform roughly the same. The oc-SVM s that we trained for NIC had Radial Basis
Functions (RBF) as kernels, since these were found to perform best for detection [126].

Attack Methodology We evaluated n-ML and other defenses against untargeted
attacks, as they are easier to attain from the point of view of attackers, and more
challenging to defend against from the point of view of the defender. For AdvPGD ,
LID , and NIC , we used typical PGD untargeted attacks with various adaptations
depending on the setting. Typical untargeted attacks, however, are unlikely to evade
n-ML ensembles, as if the target is not specified by the attack then each DNN in the
ensemble may classify the resulting adversarial example differently, thus detecting the
presence of an attack. To address this, we used a more powerful attack, similarly to
Carlini and Wagner [31]. The attack builds on targeted PGD to generate adversarial

6.3 Evaluation Against Lp Attacks 95

examples targeting all possible incorrect classes (i.e., m−1 in total) and checks if any of
these adversarial examples is misclassified by a large number of DNNs in the ensemble
(≥ τ), and so is not detected as adversarial by the n-ML ensemble. Because targeting
every possible class increases the computational load of attacks, we used random subsets
of test sets to produce adversarial examples against n-ML. In particular, we used 1,000
samples for MNIST and 512 samples for CIFAR10 and GTSRB. The magnitude of
L∞-norm of perturbations that we considered were ε ≤ 0.3 for MNIST and ε ≤ 8

255
for

CIFAR10 and GTSRB, and we ran attacks for 40 iterations. Again, we used techniques
to attack ensembles and enhance the transferability of attacks [51, 123, 209, 224].

When directly attacking a DNN defended with LID , we simply produced adversarial
examples that were misclassified with high confidence against the DNN while ignoring
the defense. This approach was motivated by prior work, which found that high con-
fidence adversarial examples mislead LID with high likelihood [10]. When attacking a
DNN defended by NIC , we created a new DNN by combining the logits of the original
DNN and those of the classifiers built on top of every intermediate layer. We found
that forcing the original DNN and the intermediate classifiers to (mis)classify adver-
sarial examples in the same manner often led the oc-SVM s to misclassify adversarial
examples as benign.

Metrics In the context of adversarial examples, a defense’s success is measured in its
ability to prevent adversarial examples, while maintaining high benign accuracy (e.g.,
close to that of a standard classifier). The benign accuracy is the rate at which benign
inputs are classified correctly and not detected as adversarial. In contrast, the success
rate of attacks is indicative of the defense’s ability to prevent adversarial examples
(high success rate indicates a weak defense, and vice versa). For untargeted attacks,
the success rate can be measured by the rate at which adversarial examples are not
detected and are classified to a class other than the true class. Note that AdvPGD

is a method for robust classification, as opposed to detection, and so adversarially
trained DNNs always output an estimation of the most likely class (i.e., abstaining
from classifying an input that is suspected to be adversarial is not an option).

We tuned the defenses at inference time to compute different tradeoffs on the above
metrics. In the case of n-ML, we computed the benign accuracy and attacks’ success
rates for threshold values dn+1

2
e ≤ τ ≤ n. For LID , we evaluated the metrics for

different thresholds ∈ [0, 1] on the logistic regression’s probability estimates that inputs
are adversarial. NIC emits scores in arbitrary ranges—the higher the score the more
likely the input to be adversarial. We computed accuracy and success rate tradeoffs
of NIC for thresholds between the minimum and maximum values emitted for benign
samples and adversarial examples combined. In all cases, both the benign accuracy
and attacks’ success rates decreased as we increased the thresholds. AdvPGD results in
a single model that cannot be tuned at inference time. We report the single operating
point that it achieved.

6.3.4.2 Results

We now present the results of our evaluations, in terms of benign accuracy; resistance
to adversarial examples in the black-, grey-, and white-box settings; and overhead to
classification performance.

6.3 Evaluation Against Lp Attacks 96

=
4 6 8 10 12 14 16 18

be
ni

gn
 a

cc
ur

ac
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5-ML
9-ML
18-ML
avg. standard
indep. 5
indep. 9
indep. 18

(a) MNIST
=

4 6 8 10 12 14 16 18
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) CIFAR10
=

4 6 8 10 12 14 16 18
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) GTSRB

Figure 6.3: The benign accuracy of n-ML ensembles of different sizes as we varied
the thresholds. For reference, we show the average accuracy of a single standard DNN
(avg. standard), as well as the accuracy of hypothetical ensembles whose constituent
DNNs are assumed to have independent errors and the average accuracy of topologically
manipulated DNNs (indep. n). The dotted lines connecting the markers were added
to help visualize trends, but do not correspond to actual operating points.

Benign Accuracy We first report on the benign accuracy of n-ML ensembles. In
particular we were interested in finding how different was the accuracy of ensembles
from (single) standard DNNs. Ideally, it is desirable to maintain accuracy that is as
close to that of standard training as possible.

Fig. 6.3 compares the n-ML ensembles’ accuracy with standard DNNs, as well as
with hypothetical ensembles whose DNN members have the average accuracy of topo-
logically manipulated DNNs and independent errors. For low thresholds, it can be
seen that the accuracy of n-ML was close to the average accuracy of standard benign
DNNs. As we increased the thresholds, the accuracy decreased. Nonetheless, it did
not decrease as dramatically as for ensembles composed from DNNs with independent
error. For example, the accuracy of a hypothetical ensemble containing five indepen-
dent DNNs each with an accuracy of 92.93% (the average accuracy of topologically
manipulated DNNs on CIFAR10) is 69.31% when τ = 5 (i.e., we require all DNNs to
agree). In comparison, 5-ML achieved 84.82% benign accuracy for the same threshold
on CIFAR10.

We can conclude that the n-ML ensembles were almost as accurate as standard
models for low thresholds, and that they did not suffer from dramatic accuracy loss as
thresholds were increased.

Black-Box Attacks In the black-box setting, as the attacker is unaware of the use
of defenses and has no access to the classifiers, we used non-interactive transferability-
based attacks to transfer adversarial examples produced against standard surrogate
models. For n-ML and AdvPGD , we used a strong attack by transferring adversarial
examples produced against the standard DNNs held-out from training the defenses.
For LID and NIC we found that transferring adversarial examples produced against
the least accurate standard DNNs (architecture 6) was sufficient to evade classification
with high success rates.

Fig. 6.4 summarizes the results for the attacks with the highest magnitudes. For
n-ML, we report the performance of 5-ML and 9-ML, which we found to perform well

6.3 Evaluation Against Lp Attacks 97

success rate
0 0.05 0.1 0.15 0.2 0.25

be
ni

gn
 a

cc
ur

ac
y

0.7

0.75

0.8

0.85

0.9

0.95

1

Adv-PGD
LID
NIC
5-ML
9-ML

(a) MNIST

success rate
0 0.05 0.1 0.15 0.2 0.25

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) CIFAR10

success rate
0 0.05 0.1 0.15 0.2 0.25

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) GTSRB

Figure 6.4: Comparison of defenses’ performance in the black-box setting. The L∞-
norm of perturbations was set to ε = 0.3 for MNIST and ε = 8

255
for CIFAR10 and

GTSRB. Due to poor performance, the LID and NIC curves were left out from the
CIFAR10 plot after zooming in. The dotted lines connecting the n-ML markers were
added to help visualize trends, but do not correspond to actual operating points.

in the black-box setting (i.e., they achieved high accuracy while mitigating attacks). It
can be seen that n-ML outperformed other defenses across all datasets. For example, for
CIFAR10, 9-ML was able to achieve 94.50% benign accuracy at 0.00% attack success-
rate. In contrast, the second best defense, AdvPGD , achieved 87.24% accuracy at
14.02% attack success-rate.

Additional experiments that we performed demonstrated that n-ML in the black-
box setting performed roughly the same as in Fig. 6.4 when 1) different perturbation
magnitudes were used (ε ∈ {0.05, 0.1, . . . , 0.4} for MNIST and ε ∈ { 1

255
, 2
255
, . . . , 8

255
}

for CIFAR10 and GTSRB); 2) individual standard DNNs were used as surrogates
to produce adversarial examples; and 3) the same DNNs used to train topologically
manipulated DNNs were used as surrogates.

Grey-Box Attacks In the grey-box setting (where attacker are assumed to be aware
of the deployment of defenses, but have no visibility to the parameters of the classifier
and the defense), we attempted to transfer adversarial examples produced against
surrogate defended classifiers. For n-ML, we evaluated 5-ML and 9-ML in the grey-
box setting. As surrogates, we used n-ML ensembles of the same sizes and architectures
to produce adversarial examples. The derangements used for training the DNNs in the
surrogate ensembles were picked independently from the defender’s ensembles (i.e., the
derangements could agree with the defender’s derangements on certain indices). For
AdvPGD , we used three adversarially trained DNNs different than the defender’s DNNs
as surrogates. For NIC we used standard DNNs and corresponding detectors (different
than the defender’s, see above for training details) as surrogates. For LID , we simply
produced adversarial examples that were misclassified with high confidence against
undefended standard DNNs of architecture 2 (these were more architecturally similar
to the defenders’ DNNs than the surrogates used in the black-box setting).

Fig. 6.5 presents the performance of the defenses against the attacks with the high-
est magnitudes. Again, we found n-ML to achieve favorable performance over other
defenses. In the case of GTSRB, for instance, 9-ML could achieve 98.30% benign ac-

6.3 Evaluation Against Lp Attacks 98

success rate
0 0.1 0.2 0.3 0.4 0.5 0.6

be
ni

gn
 a

cc
ur

ac
y

0.7

0.75

0.8

0.85

0.9

0.95

1

Adv-PGD
LID
NIC
5-ML
9-ML

(a) MNIST

success rate
0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) CIFAR10

success rate
0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) GTSRB

Figure 6.5: Comparison of defenses’ performance in the grey-box setting. The L∞-
norm of perturbations was set to ε = 0.3 for MNIST and ε = 8

255
for CIFAR10 and

GTSRB. The dotted lines connecting the n-ML markers were added to help visualize
trends, but do not correspond to actual operating points.

curacy at 1.56% attack success-rate. None of the other defenses was able to achieve a
similar accuracy while preventing ≥98.44% of the attacks for GTSRB.

Additional experiments that we performed showed that n-ML maintained roughly
the same performance as we varied the number of DNNs in the attacker’s surrogate
ensembles (n ∈ {1, 5, 9}) and the attacks’ magnitudes (ε ∈ {0.05, 0.1, . . . , 0.4} for
MNIST and ε ∈ { 1

255
, 3
255
, 5
255
, 7
255
} for CIFAR10 and GTSRB).

White-Box Attacks Now we turn our attention to the white-box setting, where
attackers are assumed to have complete access to classifiers’ and defenses’ parameters.
In this setting, we leveraged the attacker’s knowledge of the classifiers’ and defenses’
parameters to directly optimize the adversarial examples against them.

Fig. 6.6 shows the results. One can see that, depending on the dataset, n-ML out-
performed other defenses, or achieved comparable performance to the leading defenses.
For GTSRB, n-ML significantly outperformed other defenses: 18-ML achieved a benign
accuracy of 86.01%–93.19% at attack success-rates ≤8.20%. No other defense achieved
comparable benign accuracy for such low attack success-rates. We hypothesize that
n-ML was particularly successful for GTSRB, since the dataset contains a relatively
large number of classes, and so there was a large space from which derangements for
topology manipulation could be drawn. The choice of the leading defense for MNIST
and CIFAR10 is less clear (some defenses achieved slightly higher benign accuracy,
while others were slightly better at preventing attacks), and depends on the need to
balance benign accuracy and resilience to attacks at deployment time. For example,
18-ML was slightly better at preventing attacks against MNIST than AdvPGD (1.30%
vs. 3.70% attack success-rate), but AdvPGD achieved slightly higher accuracy for the
same 18-ML operating point (99.25% vs. 95.22%).

L2-Norm Attacks The previous experiments showed that n-ML ensembles could
resist L∞-based attacks in various settings. We performed a preliminary exploration
using MNIST to assess whether n-ML could also prevent L2-based attacks. Specif-
ically, we trained 18 topologically manipulated DNNs to construct n-ML ensembles.
The training process was the same as before, except that we projected adversarial per-

6.3 Evaluation Against Lp Attacks 99

success rate
0 0.2 0.4 0.6 0.8 1

be
ni

gn
 a

cc
ur

ac
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Adv-PGD
LID
NIC
9-ML
18-ML

(a) MNIST

success rate
0 0.2 0.4 0.6 0.8 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) CIFAR10

success rate
0 0.2 0.4 0.6 0.8 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) GTSRB

Figure 6.6: Comparison of defenses’ performance in the white-box setting. The L∞-
norm of perturbations were set to ε = 0.3 for MNIST and ε = 8

255
for CIFAR10 and

GTSRB. The dotted lines connecting the n-ML markers were added to help visualize
trends, but do not correspond to actual operating points.

success rate
0 0.2 0.4 0.6 0.8 1

be
ni

gn
 a

cc
ur

ac
y

0.9

0.92

0.94

0.96

0.98

1

9-ML black-box
9-ML grey-box
18-ML white-box

Figure 6.7: Performance of MNIST n-ML ensembles against L2-norm PGD attacks
with ε = 3.

turbations to the L2 balls around benign samples when performing PGD to produce
adversarial examples for D̃. We created adversarial examples with ε ∈ {0.5, 1, 2, 3},
as we aimed to prevent adversarial examples with ε ≤ 3, following prior work [129].
The resulting topologically manipulated DNNs were accurate (an average accuracy of
98.39%±0.55%).

Using the models that we trained, we constructed n-ML ensembles of different sizes
and evaluated attacks in black-, grey-, and white-box settings. The evaluation was
exactly the same as before, except that we use L2-based PGD with ε = 3 to produce
adversarial examples. Fig. 6.7 summarizes the results for 9-ML in black- and grey-box
settings, and for 18-ML in a white-box setting. It can be seen that n-ML was effective
at preventing L2-norm attacks while maintaining high benign accuracy. For example,
9-ML was able to achieve 98.56% accuracy at ∼0% success rates for black- and grey-
box attacks, and 18-ML was able to achieve 97.46% accuracy at a success rate of 1.40%
for white-box attacks.

Overhead Of course, as n-ML requires us to run several DNNs for inference instead
of only one, using n-ML comes at the cost of increased inference time at deployment.
Now we show that the overhead is relatively small, especially compared to LID and
NIC .

6.4 Evaluation Against AGNs 100

Dataset
Standard/
AdvPGD 5-ML 9-ML 18-ML LID NIC

MNIST 0.15ms ×1.93 ×2.80 × 4.73 ×943.47 × 601.07
CIFAR10 3.72ms ×3.57 ×6.07 ×12.07 ×551.88 × 581.51
GTSRB 0.68ms ×5.35 ×8.26 ×16.41 ×852.04 ×1457.26

Table 6.3: Defenses’ overhead at inference time. The second column reports the
average inference time in milliseconds for batches containing 32 samples for a single
(standard or adversarially trained) DNN. The columns to its right report the overhead
of defenses with respect to using a single DNN for inference.

To measure the inference time, we sampled 1024 test samples from every dataset
and classified them in batches of 32 using the defended classifiers. We used 32 because
it is common to use for inspecting the behavior of DNNs [71], but the trends in the
time estimates remained the same with other batch sizes. We ran the measurements
on a machine equipped with 64GB of memory and 2.50GHz Intel Xeon CPU using a
single NVIDIA Tesla P100 GPU.

The results are shown in Table 6.3. AdvPGD did not incur time overhead at inference
due to producing a single DNN to be used for inference. Compared to using a single
DNN, inference time with n-ML increased with n. At the same time the increase
was often sublinear in n. For example, for 18-ML, the inference time increased ×4.73
for MNIST, ×12.07 for CIFAR10, and ×16.41 for GTSRB. Moreover, the increase was
significantly less dramatic than for LID (×551.88–943.47 increase) and NIC (×581.51–
1,457.26 increase). There, we observed that the main bottlenecks were computing the
LID statistics for LID , and classification with oc-SVM s for NIC .

6.4 Evaluation Against AGNs
This section reports on an evaluation of n-ML’s capability to defend against the AGN-
based attacks for fooling face-recognition systems presented in Chap. 5. Particularly,
the experiments we conducted measured to which extent n-ML can maintain high
benign accuracy while preventing attackers from producing adversarial eyeglasses via
AGNs to dodge recognition in different settings. We first present the dataset that
we used and the standard DNN architecture that we build on, then we report on the
performance of the n-ML ensembles.

6.4.1 Dataset

The datasets we used in Chap. 5 (containing ∼50 face images per subject) are too
small to train topologically manipulated face-recognition DNNs. Hence, we used a
larger dataset for training and testing the topologically manipulated and standard
DNNs. In particular, we followed the URLs published by Parkhi et al. to download
the face images they used to train the original VGG DNNs [159]. Parkhi et al. used
roughly 1,000 images of 2,622 subjects to train the DNNs. Unfortunately, however,
because some images are no longer available online, we were only able to download a

6.4 Evaluation Against AGNs 101

subset of the images. Of the images we downloaded, we selected ones that pertain to
five males and five females that had the most images (799–835 images). In total, we
selected 8,011 images, of which we used 6,449 (∼80%) for training, 801 (∼10%) for
validation, and 761 (∼10%) for testing.

6.4.2 A Standard DNN

We based the DNNs that we experimented with on the OpenFace architecture [3], one
of the architectures used in Chap. 5. We used the OpenFace rather than the VGG
architecture because it is roughly as accurate while being lighter and taking less time
to train. We again attached a classifier on top of the original OpenFace DNN that
produces discriminative features of 128 dimensions, as we did in Sec. 5.3.3 (see Fig. 5.2
for the classifier’s architecture). Yet, differently than before, we did not only update
the classifier’s weights during training. Instead, because we used a larger dataset,
we updated the weights of the whole end-to-end face-recognition DNN which includes
the base DNN for feature extraction and the classifier. Following Chap. 5.3.3, we
augmented the training data by attaching eyeglasses to 50% of the images of each
training batch to make the DNNs robust to naïve evasion attempts.

After hyperparameter search, we found that training for 30 epochs, with a batch
size of 64, and the Adam optimizer [99] led to the best performing DNN. We set the
learning rate to 1× 10−4 for the first 20 epochs, and reduced it to 1× 10−5 thereafter.
The resulting DNN achieved 98.16% accuracy on the original test set, and 97.24%
accuracy when attaching non-adversarial eyeglasses to the test images.

6.4.3 Evaluating n-ML Ensembles

Now we described how we constructed the n-ML ensembles and attacked them, and
present their performance.

To train topologically manipulated DNNs for the n-ML ensembles, we first con-
structed D̃, the dataset containing the adversarial examples needed for training. To
do so, we used AGNs to train adversarial generators to produce eyeglasses to fool the
standard DNN when attached to training images. In particular, for an image x in the
training set we picked a random target class ct 6= cx, and used AGNs to train a genera-
tor to produce adversarial eyeglasses. We then used the generator to generate eyeglass
frames that led the image to be misclassified as the target with high confidence (above
a threshold where the FPR is below 1%). Because the AGN attack is more computa-
tionally expensive than PGD , we did not produce adversarial examples targeting every
class ct 6= cx. Instead, we randomly picked that target class and produced ∼2 adver-
sarial counterparts for every training image. In total, we produced 14,646 adversarial
examples for training (i.e., |D̃|=14,646).

Using the benign training images and their adversarial counterparts, we again
trained a total of 18 topologically manipulated DNNs of the same architecture as the
standard DNN. For training, we set the hyperparameters to the same values as for stan-
dard training. The resulting DNNs achieved high benign accuracy—97.31%±0.36% on
average, comparable to the standard DNN. In the black- and grey-box settings we used

6.5 Discussion 102

nine DNNs whose derangements disagreed on all indices to construct n-ML ensembles
for defending (9-ML), while we used all DNNs in the white-box setting (18-ML).

Following our experiments from Sec. 3.3.1 and Sec. 5.4.1, we used 30 images from
the test set to measure the success rates of untargeted digital-environment attacks
against n-ML. Attackers in the digital environment can modify images on a per-pixel
level to achieve misclassification, thus making the attacks challenging to defend against.
We expect physical-environment attacks to be even less successful at evading n-ML. For
each image, we trained nine adversarial generators via AGNs, one generator to target
every class other than the true class. Using each generator, we sampled 48 adversarial
eyeglasses (to cover the majority of patterns a generator could emit Sec. 5.4.2), and
tested whether any led to misclassification by the n-ML ensembles (i.e., in total we
produced 9×48=432 variants per test image, and checked whether any was misclassi-
fied).

To evaluate attacks in the black-box setting, we attempted to transfer adversarial
examples that were produced against the standard DNN as the surrogate. In the
grey-box setting, we used nine held-out topologically manipulated DNNs to construct
a surrogate n-ML ensemble to transfer the attacks from. To produce attacks against
the ensemble, we adapted the AGNs algorithm to compute the loss with respect to
all DNNs in the ensemble when training the generator, instead of computing the loss
with respect to a single DNN. In particular, we defined the adapted loss to be the
summation of the losses of each individual DNN (see Alg. 4). In the white-box setting,
we produced attacks directly against the the n-ML18 ensemble using the adapted AGN
algorithm.

Fig. 6.8 shows the benign accuracy of the n-ML models at different attack success-
rates, as we varied the threshold τ . It can be seen that n-ML was able to effectively
prevent attacks while maintaining high benign accuracy. In the black-box setting, for
example, 9-ML was able to achieve 95.27% benign accuracy while preventing 96.67%
(i.e., 29 of 30) of the attack attempts. In comparison, digital-environment black-box
attacks against a single OpenFace DNN trained to recognize 10 subjects succeeded in
63.33%, even when transferred from a DNN of a different architecture (see Sec. 5.4.4).
In the white-box setting, 18-ML was able to achieve 92.64% benign accuracy while
preventing 46.66% (i.e., 14 of 30) of the attack attempts. In comparison, all evasion
attempts against the standard DNN in the white-box setting succeeded. As expected,
better tradeoffs could be achieved in the grey-box setting (e.g., 94.35% accuracy while
preventing 56.67% of the attacks).

6.5 Discussion
Our experiments demonstrated the effectiveness and efficiency of n-ML in various set-
tings. Still, there are some limitations and practical considerations to take into account
when deploying n-ML. We discuss these below.

6.5 Discussion 103

success rate
0 0.2 0.4 0.6 0.8 1

be
ni

gn
 a

cc
ur

ac
y

0.88

0.9

0.92

0.94

0.96

0.98

1

9-ML black-box
9-ML grey-box
18-ML white-box

Figure 6.8: Performance of face-recognition n-ML ensembles against AGN-based
attacks.

6.5.1 Limitations

Our experiments evaluated n-ML against L∞-, L2-, and AGN-based attacks. However,
in reality, attackers can use other perturbation types to evade n-ML (e.g., by adversar-
ially rotating images [55]). Conceptually, it should be possible to train n-ML to defend
against other perturbation types. We defer the evaluation to future work.

As opposed to using a single ML algorithm for inference (e.g., one standard DNN),
n-ML requires using n DNNs. As a result, more compute resources and more time
are needed to make inferences with n-ML. This may make it challenging to deploy
n-ML in settings where compute resources are scarce and close to real-time feedback
is expected (e.g., face-recognition on mobile phones). Nonetheless, it is important to
highlight that n-ML is remarkably faster at making inferences than state-of-the-art
methods for detecting adversarial examples [126, 127], as our experiments showed.

Currently, perhaps the most notable weakness of n-ML is that it is limited to
scenarios where the number of classes, m, is large. In cases where m is small, one
cannot draw many distinct derangements to train DNNs with different topologies with
which to construct n-ML ensembles. For example, when there are two classes (m = 2),
there is only one derangement that one can use to train a topologically manipulated
DNN (remember that !2 = 1), and so it is not possible to construct an ensemble
containing n ≥ 2 DNNs with distinct topologies. A possible solution is to find a new
method that does not require derangements to topologically manipulate DNNs. We
plan to pursue this direction in future work.

6.5.2 Practical Considerations

ML systems often take actions based on inferences made by ML algorithms. For ex-
ample, a biometric system may give or deny access to users based on the output of a
face-recognition DNN; an autonomous vehicle may change the driving direction, accel-
erate, stop, or slow down based on the output of a DNN for pedestrian detection; and
an anti-virus program may delete or quarantine a file based on the output of an ML
algorithm for malware detection. This raises the question of how should a system that
uses n-ML for inference react when n-ML flags an input as adversarial.

We have a couple of suggestions for courses of action that are applicable to different
settings. One possibility is to fall back to a more expensive, but less error prone,

6.6 Conclusion 104

classification mechanism. For example, if an n-ML ensemble is used for face recognition
and it flags an input as adversarial, a security guard may be called to identify the
person, and possibly override the output of the ensemble. This solution is viable when
the time and resources to use an expensive classification mechanism are available.
Another possibility is to resample the input, or classify a transformed variant of the
input, to increase the confidence in the detection or to correct the classification result.
For example, if an n-ML ensemble that is used for face recognition on a mobile phone
detects an input as adversarial, the user may be asked to reattempt identifying herself
using a new image. In this case, because the benign accuracy of n-ML is high and the
attack success-rate is low, a benign user is likely to succeed at identifying, while an
attacker is likely to be detected.

6.6 Conclusion
This chapter presented n-ML, a defense against adversarial examples. n-ML uses en-
sembles of DNNs to classify inputs by a majority vote (when a large number of DNNs
agree) and to detect adversarial examples (when the DNNs disagree). To ensure that
the ensembles have high accuracy on benign samples while also defending against ad-
versarial examples, n-ML trains the DNNs using a novel technique, (topology manip-
ulation), which allows to specify how adversarial examples should be classified by the
DNN at inference time. Our experiments using three perturbation types (ones with
bounded L2- and L∞-norms, and ones produced via AGNs) and four datasets (MNIST,
CIFAR10, GTSRB, and VGG) in black-, grey-, and white-box settings showed that n-
ML is an effective and efficient defense. In particular, n-ML roughly retained the
benign accuracies of state-of-the-art DNNs, while providing more resilience to attacks
than the best defenses known to date and making inferences faster than most.

Chapter 7

Summary and Future Work

7.1 Summary
While early work showed how adversarial examples that are close to benign inputs in
Lp distances can evade ML algorithms, the risk they pose to ML systems in practi-
cal settings remained speculative. This thesis confirmed our speculations by showing
how to systematically create adversarial examples that satisfy multiple objectives to
practically mislead state-of-the-art ML algorithms in two application domains (face
recognition and malware detection), even when the objectives necessary for practical
evasion are hard to specify precisely. In addition, to help protect ML systems and their
users, the thesis proposed a novel defense against adversarial examples.

In particular, in the face-recognition domain, we showed that attackers can create
inconspicuous and physically realizable eyeglasses to dodge recognition or imperson-
ate specific subjects when donned (Chap. 3). To create such eyeglasses, the attackers
need to solve an optimization problem to ensure not only that the eyeglasses mislead
a face-recognition system, but that they 1) do so from multiple poses; 2) have smooth
transitions between neighboring pixels; and 3) contain colors that can be physically
realized by a commodity printer. Our experiments showed that our proposed attack
can successfully mislead a state-of-the-art face-recognition DNN in the physical envi-
ronment (e.g., ≥80% success rate in all dodging attempts).

In the malware-detection domain, we showed that attackers can manipulate func-
tional code of binaries in a functionality preserving manner to mislead DNNs for mal-
ware detection (Chap. 4). To this end, the attacker guides binary-diversification tech-
niques via optimization to iteratively transform binaries till evasion occurs. Our attack
achieved near 100% success rates when evading three DNNs in different settings.

We further proposed the AGN framework to generate adversarial examples that
satisfy multiple objectives, and particularly ones that elude precise specification, such
as inconspicuousness (Chap. 5). To do so, our framework builds on the GANs frame-
work [65] to train a generator neural network to produce artifacts that evade ML algo-
rithms while being similar to artifacts from a target distribution. Using face-recognition
as a main application domain, we showed that our proposed framework can produce
inconspicuous eyeglasses (often deemed more inconspicuous than real eyeglasses by
user-study participants) to fool face recognition with even higher success rates than

105

7.2 Future Work 106

our first attack, and while satisfying additional objectives (e.g., evading recognition
under varied lighting conditions).

Last, we proposed n-ML, a defense against adversarial examples via ensembles of
diversified DNNs that is inspired by n-version programming. The key novelty of n-
ML is a training method we call topology manipulation to train DNNs to achieve high
benign accuracy while classifying adversarial examples according to a specification set
at training time. At inference time, n-ML uses DNNs that are trained with different
specification in an ensemble and classifies inputs by a vote. As the DNNs mostly agree
on benign inputs and disagree on adversarial examples, n-ML is able to detect attacks.
Our experiments with four datasets and three attacks (including AGNs), showed that
n-ML roughly maintains the benign accuracy of state-of-the-art DNNs while being more
resilient against attacks in black-, grey-, and white-box settings than prior defenses,
and achieving lower test-time overhead that the majority of defenses we tested.

7.2 Future Work
This section points out future directions to extend or apply the work presented in this
thesis.

7.2.1 Attacks in New Applications Domains

Attacks with multiple objectives akin to the ones studied in this thesis may be appli-
cable for evaluating the security of ML algorithms in other applications domains. For
example, anomaly detection algorithms are often used to protect safety-critical Indus-
trial Control Systems from harm (e.g., a cyber attack on a water treatment can lead to
poisoning drinking water [118]). To evaluate such algorithms in practical settings, one
may develop attacks to produce adversarial examples that adhere to certain physical
constraints (e.g., readings of a water-pressure sensor have to be in certain ranges).

It would also be interesting to extend the attacks presented in this thesis to evaluate
the security of systems that use sensors other than the ones we considered. For example,
in the context of face-recognition systems, we considered systems that use traditional
visible-light cameras. However, certain systems use different sensors, such as infrared
cameras [140], for face recognition. By extending our attacks, it would be possible to
explore the effect of sensors on ML systems’ security. Early work in this direction has
already shown that using a variety of sensor types can enhance security [32].

We believe that the attacks that we presented in Chap. 4 (against DNNs for mal-
ware detection) can be extended to help study and improve the robustness clone-search
methods (e.g., [50]) that are often used in reverse engineering for studying new mal-
ware, detecting patent infringements, or finding vulnerabilities in software. Ding et
al. recently suggested the use of neural networks to map assembly code to vector rep-
resentations that are similar for clones and different for non-clones [50]. Building on
our attacks, we believe that attackers can manipulate the representations generated by
such neural networks to make the representations of clones different (e.g., to make it
difficult to study new malware), or those of non-clones similar (e.g., to support a fake
patent infringement case).

7.2 Future Work 107

7.2.2 Leveraging Simulation to Test Attacks and Defenses

The physically realizable attacks against face-recognition systems that we showed in
Chap. 3 and Chap. 5 required considerable (physical) effort. As a result, it was in-
feasible to test a large number of attack attempts in the physical environment. To
address this, future work may develop realistic simulation engines in which it would
be possible to simulate how a face would look like in various locations (e.g., indoors
or outdoors) and under different conditions (e.g., changing poses and illuminations) to
evaluate attacks as well as defenses more efficiently and at a larger scale. Of course, to
accurately estimate attacks’ and defenses’ performance, it would be important to model
the physical world as realistically as possible. In fact, our preliminary exploration of
this direction were hindered by the lack of simulation realism.

7.2.3 Leveraging Attacks to Improve Security

While the majority of the work presented in this thesis explored how systems can fail
(as is often the case in computer security), it is important to ensure that the knowledge
that we accumulated would help make systems and ML algorithms more secure. One
(rather traditional) way to do so is by building on our knowledge of how systems can
be attacked to develop defenses, as we did in Chap. 6. A novel way that we aim
to leverage the attacks in to improve security is by deceiving attackers that can be
faithfully modeled as ML algorithms to protect systems and users’ data. For example,
attackers seeking to guess users’ passwords [94, 136], or ones attempting fingerprint
the web traffic of anonymous communication systems’ users [167, 196], can often be
modeled via ML algorithms. In these settings, adversarial examples against the ML
models can inform how the defender can prevent attacks.

7.2.4 Making n-ML Training More Efficient and General

While training a single topologically manipulated DNN for an n-ML ensemble takes as
much time as training a standard DNN (see Sec. 6.2), training n DNNs takes ×n as
much. In the future, it would be useful to explore ways to reduce the amount of time
that is needed for training to increase the efficiency and practicality of the defense. A
possible way to do so would be to train topologically manipulated DNNs starting from
a pretrained DNN that already performs well on benign inputs. Such training process
may require less time to converge, thus reducing the total time needed for training n
DNNs.

Additionally, to make n-ML more practical, it would be useful to generalize it for
additional settings and attack types. These include 1) developing methods to topo-
logically manipulate large number of DNNs when the number of classes is small (i.e.,
finding ways to specify or manipulate topologies that do not require derangements); 2)
generalizing the notion of topology manipulation to classifiers other than DNNs that
are also vulnerable against adversarial examples (e.g., SVMs [59]); and 3) defending
against multiple perturbation types at once, akin to recent work [131].

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In Proc. OSDI, 2016.

[2] M. Abbasi and C. Gagné. Robustness to adversarial examples through an ensemble of
specialists. In Proc. ICLRW, 2017.

[3] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. OpenFace: A general-purpose face
recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU
School of Computer Science, 2016.

[4] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth. Learning to evade
static PE machine learning malware models via reinforcement learning. arXiv preprint
arXiv:1801.08917, 2018.

[5] H. S. Anderson and P. Roth. Ember: An open dataset for training static PE malware
machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[6] S. E. Armoun and S. Hashemi. A general paradigm for normalizing metamorphic mal-
wares. In Proc. FIT, 2012.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. Drebin:
Effective and explainable detection of android malware in your pocket. In Proc. NDSS,
2014.

[8] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proc.
SODA, 2007.

[9] A. Athalye and N. Carlini. On the robustness of the CVPR 2018 white-box adversarial
example defenses. arXiv preprint arXiv:1804.03286, 2018.

[10] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Proc. ICML, 2018.

[11] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial ex-
amples. In Proc. ICML, 2018.

[12] Autodesk. Measuring light levels. https://goo.gl/hkBWbZ.
[13] A. Avizienis. The N-version approach to fault-tolerant software. IEEE Transactions on

software engineering, (12):1491–1501, 1985.
[14] T. Baltrušaitis, P. Robinson, and L.-P. Morency. Openface: An open source facial

behavior analysis toolkit. In Proc. WACV, 2016.
[15] S. Baluja and I. Fischer. Adversarial transformation networks: Learning to generate

adversarial examples. In Proc. AAAI, 2018.
[16] B. Barak, N. Bitansky, R. Canetti, Y. T. Kalai, O. Paneth, and A. Sahai. Obfuscation

for evasive functions. In Proc. TCC, 2014.

108

https://goo.gl/hkBWbZ

109

[17] A. D. Bethke. Genetic Algorithms As Function Optimizers. PhD thesis, University of
Michigan, 1980.

[18] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli. Evasion attacks against machine learning at test time. In Proc. ECML PKDD,
2013.

[19] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

[20] F. Biondi, M. Enescu, T. Given-Wilson, A. Legay, L. Noureddine, and V. Verma. Effec-
tive, efficient, and robust packing detection and classification. Computers and Security,
2018.

[21] A. J. Booker, J. Dennis Jr, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates. Structural
optimization, 17(1):1–13, 1999.

[22] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proc.
COMPSTAT, 2010.

[23] W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In Proc. ICLR, 2018.

[24] N. Brown and T. Sandholm. Libratus: The superhuman ai for no-limit poker. In Proc.
IJCAI, 2017.

[25] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. Bap: A binary analysis platform.
In Proc. CAV, 2011.

[26] T. Brunner, F. Diehl, M. T. Le, and A. Knoll. Guessing smart: Biased sampling for
efficient black-box adversarial attacks. In Proc. ICCV, 2019.

[27] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li. Adversarial objects
against Lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418,
2019.

[28] CaretDashCaret. 3d printable frames from eyeglasses SVGs. https://github.com/
caretdashcaret/pince-nez. Online; accessed 27 Oct 2019.

[29] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and
W. Zhou. Hidden voice commands. In Proc. USENIX Security, 2016.

[30] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proc. AISec, 2017.

[31] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In
Proc. IEEE S&P, 2017.

[32] V. Chandrasekaran, B. Tang, V. Pendyala, K. Fawaz, S. Jha, and X. Wu. Enhancing
ml robustness using physical-world constraints. arXiv preprint arXiv:1905.10900, 2019.

[33] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the
details: Delving deep into convolutional nets. In Proc. BMVC, 2014.

[34] L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach to reli-
ability of software operation. In Proc. ISFTC, 1995.

[35] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute
models. In Proc. AISec, 2017.

[36] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau. Shapeshifter: Robust physical
adversarial attack on faster r-cnn object detector. In Proc. ECML PKDD, 2018.

https://github.com/caretdashcaret/pince-nez
https://github.com/caretdashcaret/pince-nez

110

[37] B. Cheng, J. Ming, J. Fu, G. Peng, T. Chen, X. Zhang, and J.-Y. Marion. Towards
paving the way for large-scale windows malware analysis: Generic binary unpacking
with orders-of-magnitude performance boost. In Proc. CCS, 2018.

[38] M. Christodorescu and S. Jha. Testing malware detectors. In Proc. ISSTA, 2004.
[39] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware

malware detection. In Proc. IEEE S&P, 2005.
[40] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith. Malware normal-

ization. Technical report, University of Wisconsin-Madison, 2005.
[41] Chronicle. Virustotal. https://www.virustotal.com/, 2004–. Online; accessed 27 Oct

2019.
[42] M. Cisse, Y. Adi, N. Neverova, and J. Keshet. Houdini: Fooling deep structured

prediction models. In Proc. NIPS, 2017.
[43] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness via ran-

domized smoothing. In Proc. ICML, 2019.
[44] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.

Technical report, The University of Auckland, 1997.
[45] S. Coull and C. Gardner. What are deep neural networks learning about malware?

http://tiny.cc/FireEyeDNN, 2018. Online; accessed 27 Oct 2019.
[46] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-

Tuong, and J. Hiser. N-variant systems: A secretless framework for security through
diversity. In Proc. USENIX Security, 2006.

[47] Cylance Inc. Cylance: Artificial intelligence based advanced threat prevention. https:
//www.cylance.com/en-us/index.html, 2019. Online; accessed 27 Oct 2019.

[48] H. Dang, Y. Huang, and E.-C. Chang. Evading classifiers by morphing in the dark. In
Proc. CCS, 2017.

[49] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando. Explaining vulnerabilities
of deep learning to adversarial malware binaries. arXiv preprint arXiv:1901.03583, 2019.

[50] S. H. Ding, B. C. Fung, and P. Charland. Asm2Vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization.
In Proc. IEEE S&P, 2019.

[51] Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to transferable adversarial
examples by translation-invariant attacks. In Proc. CVPR, 2019.

[52] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proc.
MHS, 1995.

[53] S. Eberz, N. Paoletti, M. Roeschlin, M. Kwiatkowska, I. Martinovic, and A. Patané.
Broken hearted: How to attack ECG biometrics. In Proc. NDSS, 2017.

[54] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In Proc.
ICCV, 1999.

[55] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry. A rotation and a translation
suffice: Fooling CNNs with simple transformations. In Proc. NeurIPSW, 2017.

[56] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115, 2017.

[57] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati, and
D. Song. Robust physical-world attacks on machine learning models. In Proc. CVPR,
2018.

https://www.virustotal.com/
https://www.cylance.com/en-us/index.html
https://www.cylance.com/en-us/index.html

111

[58] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou. Learning deep face representation.
arXiv preprint arXiv:1403.2802, 2014.

[59] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classifiers’ robustness to adversarial
perturbations. arXiv preprint arXiv:1502.02590, 2015.

[60] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting adversarial samples
from artifacts. arXiv preprint arXiv:1703.00410, 2017.

[61] R. Feng and B. Prabhakaran. Facilitating fashion camouflage art. In Proc. 21st ACM
International Conference on Multimedia, pages 793–802. ACM, 2013.

[62] W. Fleshman, E. Raff, J. Sylvester, S. Forsyth, and M. McLean. Non-negative networks
against adversarial attacks. arXiv preprint arXiv:1806.06108, 2018.

[63] J. Gilmer, R. P. Adams, I. Goodfellow, D. Andersen, and G. E. Dahl. Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732,
2018.

[64] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[65] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. NIPS, 2014.

[66] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In Proc. ICLR, 2015.

[67] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel. On the (statistical)
detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

[68] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel. Adversarial
examples for malware detection. In Proc. ESORICS, 2017.

[69] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser. The Cuckoo Sandbox. https:
//cuckoosandbox.org/, 2012. Online; accessed 27 Oct 2019.

[70] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial images
using input transformations. In Proc. ICLR, 2018.

[71] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and
P. Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. In Proc.
SOSP, 2019.

[72] L. C. Harris and B. P. Miller. Practical analysis of stripped binary code. ACM SIGARCH
Computer Architecture News, 33(5):63–68, 2005.

[73] A. Harvey. CV Dazzle: Camouflage from face detection. Master’s thesis, New York
University, 2010. Available at: http://cvdazzle.com.

[74] R. Hassan, B. Cohanim, O. De Weck, and G. Venter. A comparison of particle swarm
optimization and the genetic algorithm. In Proc. MDO, 2005.

[75] W. He, J. Wei, X. Chen, N. Carlini, and D. Song. Adversarial example defense: En-
sembles of weak defenses are not strong. In Proc. WOOT, 2017.

[76] C. Herley. So long, and no thanks for the externalities: the rational rejection of security
advice by users. In Proc. NSPW, 2009.

[77] Hex-Rays. IDA: About. https://www.hex-rays.com/products/ida/. Online; accessed
27 Oct 2019.

[78] H. Hosseini and R. Poovendran. Semantic adversarial examples. In Proc. CVPRW,
2018.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://www.hex-rays.com/products/ida/

112

[79] W. Hu and Y. Tan. Generating adversarial malware examples for black-box attacks
based on GAN. arXiv preprint arXiv:1702.05983, 2017.

[80] B. Huang, Y. Wang, and W. Wang. Model-agnostic adversarial detection by random
perturbations. In Proc. IJCAI, 2019.

[81] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October 2007.

[82] L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In Proc. AISec, 2011.

[83] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learning with a strong adversary.
CoRR, abs/1511.03034, 2015.

[84] W. Huang and J. W. Stokes. MtNet: A multi-task neural network for dynamic malware
classification. In Proc. DIMVA, 2016.

[85] A. Ilyas, L. Engstrom, and A. Madry. Prior convictions: Black-box adversarial attacks
with bandits and priors. In Proc. ICLR, 2019.

[86] I. Incer, M. Theodorides, S. Afroz, and D. Wagner. Adversarially robust malware
detection using monotonic classification. In Proc. IWSPA, 2018.

[87] L. Introna and H. Nissenbaum. Facial recognition technology: A survey of policy and
implementation issues. Technical report, Center for Catastrophe Preparedness and
Response, New York University, 2009.

[88] Itseez. OpenCV: Open Source Computer Vision. http://opencv.org/.
[89] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-llvm–software protection

for the masses. In Proc. IWSP, 2015.
[90] C. Kanbak, S.-M. Moosavi-Dezfooli, and P. Frossard. Geometric robustness of deep

networks: analysis and improvement. In Proc. CVPR, 2018.
[91] H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing. arXiv preprint

arXiv:1803.06373, 2018.
[92] A. Kantchelian, J. Tygar, and A. D. Joseph. Evasion and hardening of tree ensemble

classifiers. In Proc. ICML, 2016.
[93] S. Kariyappa and M. K. Qureshi. Improving adversarial robustness of ensembles with

diversity training. arXiv preprint arXiv:1901.09981, 2019.
[94] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,

L. F. Cranor, and J. Lopez. Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms. In Proc. IEEE S&P, 2012.

[95] J. Kennedy, D. Batchelor, C. Robertson, M. Satran, and M. LeBLanc. PE
format. https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format,
2019. Online; accessed 3 June 2019.

[96] Keras team. Keras: The Python deep learning library. https://keras.io/, 2015.
Online; accessed 30 Sep 2019.

[97] Keras team. MNIST CNN. https://github.com/keras-team/keras/blob/master/
examples/mnist_cnn.py, 2018. Online; accessed 28 Sep 2019.

[98] Keras team. MNIST MLP. https://keras.io/examples/mnist_mlp/, 2018. Online;
accessed 28 Sep 2019.

[99] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR,
2015.

http://opencv.org/
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
https://keras.io/
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://keras.io/examples/mnist_mlp/

113

[100] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang. Ef-
fective and efficient malware detection at the end host. In Proc. USENIX Security,
2009.

[101] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F. Roli.
Adversarial malware binaries: Evading deep learning for malware detection in executa-
bles. In Proc. EUSIPCO, 2018.

[102] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious executables in
the wild. Journal of Machine Learning Research, 7(Dec):2721–2744, 2006.

[103] J. Z. Kolter and E. Wong. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In Proc. ICML, 2018.

[104] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis. Compiler-assisted code
randomization. In Proc. IEEE S&P. IEEE, 2018.

[105] H. Koo and M. Polychronakis. Juggling the gadgets: Binary-level code randomization
using instruction displacement. In Proc. AsiaCCS, 2016.

[106] N. Koren. Color management and color science. http://www.normankoren.com/color_
management.html. Online; accessed 27 Oct 2019.

[107] M. Krčál, O. Švec, M. Bálek, and O. Jašek. Deep convolutional malware classifiers can
learn from raw executables and labels only. In Proc. ICLRW, 2018.

[108] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet. Adversarial
examples on discrete sequences for beating whole-binary malware detection. In Proc.
NeurIPSW, 2018.

[109] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[110] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated
binaries. In Proc. USENIX Security, 2004.

[111] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers
for face verification. In Proc. ICCV, 2009.

[112] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
In Proc. ICLRW, 2017.

[113] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In
Proc. ICLR, 2017.

[114] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software diversity.
In Proc. IEEE S&P, 2014.

[115] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
Proc. ICML, 2014.

[116] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998. Online; accessed 1 Oct 2019.

[117] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to
adversarial examples with differential privacy. In Proc. IEEE S&P, 2019.

[118] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng. MAD-GAN: Multivariate anomaly
detection for time series data with generative adversarial networks. In Proc. ICANN,
2019.

[119] J. Li and Z. Wang. Real-time traffic sign recognition based on efficient CNNs in the
wild. IEEE Transactions on Intelligent Transportation Systems, 20(3):975–984, 2018.

[120] B. Liang, M. Su, W. You, W. Shi, and G. Yang. Cracking classifiers for evasion: A case
study on the Google’s phishing pages filter. In Proc. WWW, 2016.

http://www.normankoren.com/color_management.html
http://www.normankoren.com/color_management.html
http://yann.lecun.com/exdb/mnist/

114

[121] F. Liao, M. Liang, Y. Dong, T. Pang, J. Zhu, and X. Hu. Defense against adversarial
attacks using high-level representation guided denoiser. In Proc. CVPR, 2018.

[122] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh. Towards robust neural networks via
random self-ensemble. In Proc. ECCV, 2018.

[123] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples
and black-box attacks. In Proc. ICLR, 2017.

[124] D. Lowd and C. Meek. Adversarial learning. In Proc. KDD, 2005.
[125] P.-H. Lu, P.-Y. Chen, and C.-M. Yu. On the limitation of local intrinsic dimen-

sionality for characterizing the subspaces of adversarial examples. arXiv preprint
arXiv:1803.09638, 2018.

[126] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang. NIC: Detecting adversarial samples
with neural network invariant checking. In Proc. NDSS, 2019.

[127] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song,
M. E. Houle, and J. Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. In Proc. ICLR, 2018.

[128] F. Machida. N-version machine learning models for safety critical systems. In Proc.
DSN DSMLW, 2019.

[129] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In Proc. ICLR, 2018.

[130] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting
them. In Proc. CVPR, 2015.

[131] P. Maini, E. Wong, and J. Z. Kolter. Adversarial robustness against the union of multiple
perturbation models. arXiv preprint arXiv:1909.04068, 2019.

[132] T. Malzbender, D. Gelb, and H. Wolters. Polynomial texture maps. In Proc. SIG-
GRAPH, 2001.

[133] H. Massalin. Superoptimizer: A look at the smallest program. ACM SIGARCH Com-
puter Architecture News, 15(5):122–126, 1987.

[134] M. L. McHugh. The chi-square test of independence. Biochemia Medica, 23(2):143–149,
2013.

[135] Megvii Inc. Face++. http://www.faceplusplus.com/.
[136] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin, and L. F.

Cranor. Fast, lean, and accurate: Modeling password guessability using neural networks.
In Proc. USENIX Security, 2016.

[137] D. Meng and H. Chen. Magnet: A two-pronged defense against adversarial examples.
In Proc. CCS, 2017.

[138] X. Meng, B. P. Miller, and S. Jha. Adversarial binaries for authorship identification.
arXiv preprint arXiv:1809.08316, 2018.

[139] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversarial
perturbations. In Proc. ICLR, 2017.

[140] Microsoft. Windows Hello face authentication. http://tiny.cc/MSHelloIR, 2017. On-
line; accessed 27 Oct 2019.

[141] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for provably
robust neural networks. In Proc. ICML, 2018.

[142] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing
with virtual adversarial training. In Proc. ICLR, 2016.

http://www.faceplusplus.com/
http://tiny.cc/MSHelloIR

115

[143] MobileSec. Mobilesec Android Authentication Framework. https://github.com/
mobilesec/authentication-framework-module-face.

[144] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial
perturbations. In Proc. CVPR, 2017.

[145] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A simple and accurate
method to fool deep neural networks. In Proc. CVPR, 2016.

[146] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In
Proc. ACSAC, 2007.

[147] NEC. Face recognition. http://www.nec.com/en/global/solutions/biometrics/
technologies/face_recognition.html.

[148] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14(1):265–294,
1978.

[149] NEURO Technology. SentiVeillance SDK. http://www.neurotechnology.com/
sentiveillance.html.

[150] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

[151] P. S. Oliveto, T. Paixão, J. P. Heredia, D. Sudholt, and B. Trubenová. How to es-
cape local optima in black box optimisation: When non-elitism outperforms elitism.
Algorithmica, 80(5):1604–1633, 2018.

[152] T. Pang, C. Du, Y. Dong, and J. Zhu. Towards robust detection of adversarial examples.
In Proc. NeurIPS, 2018.

[153] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu. Improving adversarial robustness via
promoting ensemble diversity. In Proc. ICML, 2019.

[154] N. Papernot and P. McDaniel. Deep k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

[155] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning:
From phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[156] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical
black-box attacks against machine learning. In Proc. AsiaCCS, 2017.

[157] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Proc. IEEE Euro S&P, 2016.

[158] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In Proc. IEEE S&P,
2012.

[159] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In Proc. BMVC,
2015.

[160] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and
Nonlinear Mixed Effects Models, 2015. R package version 3.1-122.

[161] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie. Generative adversarial perturba-
tions. In Proc. CVPR, 2018.

[162] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel. Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition. In Proc. ICML, 2019.

[163] E. Quiring, A. Maier, and K. Rieck. Misleading authorship attribution of source code
using adversarial learning. In Proc. USENIX Security, 2019.

https://github.com/mobilesec/authentication-framework-module-face
https://github.com/mobilesec/authentication-framework-module-face
http://www.nec.com/en/global/solutions/biometrics/technologies/face_recognition.html
http://www.nec.com/en/global/solutions/biometrics/technologies/face_recognition.html
http://www.neurotechnology.com/sentiveillance.html
http://www.neurotechnology.com/sentiveillance.html

116

[164] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In Proc. ICLR, 2016.

[165] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas. Malware
detection by eating a whole exe. In Proc. AAAIW, 2018.

[166] A. Raghunathan, J. Steinhardt, and P. S. Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Proc. NeurIPS, 2018.

[167] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen. Automated
website fingerprinting through deep learning. In Proc. NDSS, 2018.

[168] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56(3):1247–
1293, 2013.

[169] M. Roberts. Virusshare. https://virusshare.com/, 2012. Online; accessed 18 June
2019.

[170] P. Robinette, W. Li, R. Allen, A. M. Howard, and A. R. Wagner. Overtrust of robots
in emergency evacuation scenarios. In Proc. HRI, 2016.

[171] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi. Microsoft malware
classification challenge. arXiv preprint arXiv:1802.10135, 2018.

[172] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. Generic black-box end-to-end
attack against state of the art API call based malware classifiers. In Proc. RAID, 2018.

[173] K. A. Roundy and B. P. Miller. Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys (CSUR), 46(1):4, 2013.

[174] A. Rozsa, E. M. Rudd, and T. E. Boult. Adversarial diversity and hard positive gener-
ation. In Proc. CVPRW, 2016.

[175] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Technical report, DTIC Document, 1985.

[176] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial manipulation of deep repre-
sentations. In Proc. ICLR, 2016.

[177] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Im-
proved techniques for training gans. In Proc. NIPS, 2016.

[178] H. Salman, G. Yang, J. Li, P. Zhang, H. Zhang, I. Razenshteyn, and S. Bubeck. Provably
robust deep learning via adversarially trained smoothed classifiers. In Proc. NeurIPS,
2019. To appear.

[179] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang. A convex relaxation barrier
to tight robustness verification of neural networks. In Proc. NeurIPS, 2019. To appear.

[180] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In Proc. ICLR, 2018.

[181] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. In Proc. ASPLOS,
2013.

[182] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa. Adversarial attacks against
automatic speech recognition systems via psychoacoustic hiding. In Proc. NDSS, 2019.

[183] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proc. CVPR, 2015.

[184] M. Sconzo. Packer yara ruleset. https://github.com/sooshie/packerid, 2014. On-
line; accessed 18 June 2019.

https://virusshare.com/
https://github.com/sooshie/packerid

117

[185] A. Sen, X. Zhu, L. Marshall, and R. Nowak. Should adversarial attacks use pixel p-
norm? arXiv preprint arXiv:1906.02439, 2019.

[186] S. Sengupta, T. Chakraborti, and S. Kambhampati. MTDeep: Moving target defense
to boost the security of deep neural nets against adversarial attacks. In Proc. GameSec,
2019.

[187] P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional
networks. In Proc. IJCNN, 2011.

[188] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor,
and T. Goldstein. Adversarial training for free! In Proc. NeurIPS, 2019. To appear.

[189] M. Sharif, L. Bauer, and M. K. Reiter. On the suitability of lp-norms for creating and
preventing adversarial examples. In Proc. CVPRW, 2018.

[190] M. Sharif, L. Bauer, and M. K. Reiter. n-ML: Mitigating adversarial examples via
ensembles of topologically manipulated classifiers. In Proc. IEEE S&P, 2020. Under
submission.

[191] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In Proc. CCS, 2016.

[192] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. A general framework for adver-
sarial examples with objectives. ACM Transactions on Privacy and Security (TOPS),
2019.

[193] M. Sharif, K. Lucas, L. Bauer, M. K. Reiter, and S. Shintre. Optimization-guided binary
diversification to mislead neural networks for malware detection. In Proc. NDSS, 2020.
Under submission.

[194] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

[195] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[196] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In Proc. CCS, 2018.

[197] C. Sitawarin, A. N. Bhagoji, A. Mosenia, P. Mittal, and M. Chiang. Rogue signs:
Deceiving traffic sign recognition with malicious ads and logos. arXiv preprint
arXiv:1801.02780, 2018.

[198] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity:
The all convolutional net. In Proc. ICLR, 2015.

[199] V. Srinivasan, A. Marban, K.-R. Müller, W. Samek, and S. Nakajima. Counterstrike:
Defending deep learning architectures against adversarial samples by Langevin dynamics
with supervised denoising autoencoder. arXiv preprint arXiv:1805.12017, 2018.

[200] N. Srndic and P. Laskov. Practical evasion of a learning-based classifier: A case study.
In Proc. IEEE S&P, 2014.

[201] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking
machine learning algorithms for traffic sign recognition. Neural Networks, 32:323–332,
2012.

[202] K. O. Stanley. Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8(2):131–162, 2007.

118

[203] Y. Steinbuch. JetBlue ditching boarding passes for facial recognition. New York Post,
May 31 2017.

[204] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer. Ensemble methods as a
defense to adversarial perturbations against deep neural networks. arXiv preprint
arXiv:1709.03423, 2017.

[205] O. Suciu, S. E. Coull, and J. Johns. Exploring adversarial examples in malware detec-
tion. In Proc. AAAIW, 2018.

[206] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. In Proc. ICLR, 2014.

[207] P. Szor. The Art of Computer Virus Research and Defense. Pearson Education, 2005.
[208] L. Tian. Traffic sign recognition using CNN with learned color and spatial transforma-

tion. http://tiny.cc/GTSRB_STCNN, 2017. Online; accessed on 28 Sep 2019.
[209] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. En-

semble adversarial training: Attacks and defenses. In Proc. ICLR, 2018.
[210] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. SoK: Deep packer

inspection: A longitudinal study of the complexity of run-time packers. In Proc. IEEE
S&P, 2015.

[211] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural networks for MATLAB.
In Proc. ACMMM, 2015.

[212] D. Vijaykeerthy, A. Suri, S. Mehta, and P. Kumaraguru. Hardening deep neural net-
works via adversarial model cascades. 2019.

[213] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proc. CVPR, 2001.

[214] VirusTotal. Packer yara ruleset. https://github.com/Yara-Rules/rules/tree/
master/Packers, 2016. Online; accessed 18 June 2019.

[215] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In
Proc. CCS, 2002.

[216] A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakhotia. Normalizing metamor-
phic malware using term rewriting. In Proc. SCAM, 2006.

[217] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang. Adversarial sample detection for
deep neural network through model mutation testing. In Proc. ICSE, 2019.

[218] S. Wang, P. Wang, and D. Wu. Uroboros: Instrumenting stripped binaries with static
reassembling. In Proc. SANER, 2016.

[219] X. Wang, S. Wang, P.-Y. Chen, Y. Wang, B. Kulis, X. Lin, and P. Chin. Protecting neu-
ral networks with hierarchical random switching: Towards better robustness-accuracy
trade-off for stochastic defenses. arXiv preprint arXiv:1908.07116, 2019.

[220] E. Wong, F. R. Schmidt, and J. Z. Kolter. Wasserstein adversarial examples via pro-
jected sinkhorn iterations. arXiv preprint arXiv:1902.07906, 2019.

[221] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Generating adversarial examples
with adversarial networks. In Proc. IJCAI, 2018.

[222] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song. Spatially transformed adversarial
examples. In Proc. ICLR 2018, 2018.

[223] C. Xie, Y. Wu, L. van der Maaten, A. Yuille, and K. He. Feature denoising for improving
adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.

http://tiny.cc/GTSRB_STCNN
https://github.com/Yara-Rules/rules/tree/master/Packers
https://github.com/Yara-Rules/rules/tree/master/Packers

119

[224] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille. Improving
transferability of adversarial examples with input diversity. In Proc. CVPR, 2019.

[225] H. Xu, Z. Chen, W. Wu, Z. Jin, S.-y. Kuo, and M. Lyu. NV-DNN: Towards fault-tolerant
DNN systems with N-version programming. In Proc. DSN DSMLW, 2019.

[226] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples in
deep neural networks. In Proc. NDSS, 2018.

[227] W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers. In Proc. NDSS, 2016.
[228] T. Yamada, S. Gohshi, and I. Echizen. Privacy Visor: Method based on light absorbing

and reflecting properties for preventing face image detection. In Proc. SMC, 2013.
[229] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep

neural networks? In Proc. NIPS, 2014.
[230] S. Zagoruyko and N. Komodakis. Wide residual networks. In Proc. BMVC, 2016.
[231] M. D. Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.
[232] Q. Zeng, J. Su, C. Fu, G. Kayas, L. Luo, X. Du, C. C. Tan, and J. Wu. A multiversion

programming inspired approach to detecting audio adversarial examples. In Proc. DSN,
2019.

[233] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. DolphinAttack: Inaudible
voice commands. In Proc. CCS, 2017.

[234] Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. In Proc.
ICLR, 2018.

[235] E. Zhou, Z. Cao, and Q. Yin. Naive-deep face recognition: Touching the limit of LFW
benchmark or not? arXiv preprint arXiv:1501.04690, 2015.

[236] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu. DeepBillboard:
Systematic physical-world testing of autonomous driving systems. arXiv preprint
arXiv:1812.10812, 2018.

	Committee Members
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Outline

	Background and Related Work
	Attacks Minimizing Lp-norms
	Attacks with Other Objectives
	Defending ml Algorithms
	Threat Models

	Physical-World Attacks Against Face Recognition
	Introduction
	Technical Approach
	Evaluation
	Extension to Black-box Models
	Extension to Face Detection
	Discussion
	Conclusion

	Functionality-Preserving Attacks Against Malware Detection
	Introduction
	Technical Approach
	Evaluation
	Discussion
	Conclusion

	A General Framework for Attacks with Objectives
	Introduction
	A Novel Attack Against DNNs
	AGNs that Fool Face Recognition
	Evaluation
	Discussion and Conclusion

	Mitigating Adversarial Examples via Ensembles of Topologically Manipulated Classifiers
	Introduction
	Technical Approach
	Evaluation Against Lp Attacks
	Evaluation Against AGNs
	Discussion
	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Bibliography

