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Abstract
Machine learning (ML) models have shown promise in clas-
sifying raw executable files (binaries) as malicious or benign
with high accuracy. This has led to the increasing influence of
ML-based classification methods in academic and real-world
malware detection, a critical tool in cybersecurity. However,
previous work provoked caution by creating variants of mali-
cious binaries, referred to as adversarial examples, that are
transformed in a functionality-preserving way to evade detec-
tion. In this work, we investigate the effectiveness of using
adversarial training methods to create malware-classification
models that are more robust to some state-of-the-art attacks.
To train our most robust models, we significantly increase
the efficiency and scale of creating adversarial examples to
make adversarial training practical, which has not been done
before in raw-binary malware detectors. We then analyze the
effects of varying the length of adversarial training, as well as
analyze the effects of training with various types of attacks.
We find that data augmentation does not deter state-of-the-art
attacks, but that using a generic gradient-guided method, used
in other discrete domains, does improve robustness. We also
show that in most cases, models can be made more robust to
malware-domain attacks by adversarially training them with
lower-effort versions of the same attack. In the best case, we
reduce one state-of-the-art attack’s success rate from 90%
to 5%. We also find that training with some types of attacks
can increase robustness to other types of attacks. Finally, we
discuss insights gained from our results, and how they can be
used to more effectively train robust malware detectors.

1 Introduction

Determining if a piece of software is malicious is an important
cybersecurity task, which is currently accomplished via an
ensemble of automated analyses. A recent addition, due to
their high accuracy, is machine learning (ML) algorithms
trained to infer maliciousness from the compiled bytes of
an executable binary [32, 46, 47]. However, it has become

evident that these trained malware classifiers can be fooled
by adversarial examples [2, 18, 29, 33, 36, 53].

Finding adversarial examples for neural networks, along
with efforts to make neural networks more robust and trust-
worthy, has become a well-documented cat-and-mouse game,
where increasingly sophisticated attacks [5,7,9,13,23,41,55]
(i.e., an evasive binary, adversarial example) lead to increas-
ingly sophisticated defenses [13,23,37,50,60] and vice versa.
Defending against such attacks is becoming increasingly im-
portant as ML-based systems take on more complex and
safety-critical tasks (e.g., driving cars).

While there has been promising progress in defending
against [36] raw-binary adversarial examples that modify
non-executable portions of binaries [33], recent attacks re-
main effective at evading otherwise accurate malware classi-
fiers [36]. In this work, we experiment with adversarial train-
ing strategies to produce raw-binary malware classifiers that
resist three state-of-the-art evasion methods, referred to as In-
Place Replacement (IPR) [36], Displacement (Disp) [36], and
Kreuk [33]. Our strategies include augmenting the training
data by (1) applying random (i.e., unguided) transformations
of the same type used in attacks (e.g., IPR [42] and Disp [31]);
(2) using modified versions of IPR and Disp adversarial exam-
ples [36]; (3) directly training with Kreuk adversarial exam-
ples; and (4) using a perturbation method inspired by similar
perturbations from other discrete domains [61, 62]. Further-
more, we study the effects on robustness as we vary the num-
ber of batches of adversarial examples used in training, the
number of iterations for which transformations and attacks
are executed during training, and the percentage of bytes (i.e.,
budget) a transformation or attack can modify during training.

To make these strategies possible, we address several chal-
lenges. Training on IPR and Disp adversarial examples had
not been attempted before, as using these transformations for
evasion is new [36] and has previously been too computation-
ally expensive (see Sec. 3). Also, to be eligible for transfor-
mation, IPR and Disp require that each candidate binary be
unpacked and previously disassembled. To enable these exper-
iments, we detail several improvements and optimizations, in-



cluding vastly increasing the number of binaries eligible to be
turned into adversarial examples (200−→ 126,009); code-level
optimizations to the adversarial-example-generation code to
speed up each individual attack (Sec. 3.3); a distributed sys-
tem of over 140 workers across thirteen servers to produce
adversarial examples in parallel (Sec. 3.1); and training with
less effective but computationally cheaper versions (Sec. 3.3)
of the originally proposed attacks [33, 36].

Our findings include the following:

• Adversarial training using data-augmentation techniques
is ineffective in defending against adversarial examples
in the domain of raw-binary classification.

• In contrast, adversarial training using state-of-the-art
attacks can yield robust models (90% −→ 5%, 26% −→
6%, and 84% −→ 30% attack success rate for Disp-,
IPR-, Kreuk-based attacks, respectively) when evaluated
against the same type of attack used during training. We
also find that these models can reduce success for attacks
they were not trained on by up to 65%. We investigate
how changing parameters of the attacks used in train-
ing (e.g., number of attack iterations, permitted file size
increase, type of attack) affects the robustness of the
resulting model.

• We construct, train with, and evaluate a perturbation strat-
egy inspired by other discrete domains [61, 62], referred
to as Greedy, which modifies the discrete bytes of the
input binary without regard to the underlying structure,
to insert evasive bytes in the most important locations.
We find that this approach is effective in inducing some
robustness against all attacks.

• Finally, we adversarially train a classifier with adversar-
ial examples created by three different attacks, and find
that this classifier exhibits close to best-case robustness
against every attack type.

2 Background and Related Work

Our work builds on research using deep neural networks
(DNNs) for malware detection from raw binaries [32, 46],
along with work generating adversarial examples in the mal-
ware domain [18, 19, 33, 36, 52] and other domains [5, 7, 9, 23,
41, 55]. Next, we cover the background of these topics, and
describe the state of the art in creating adversarial examples
for malware detectors and defending against them.

2.1 DNNs for Malware Detection
Various feature types have been proposed for malware detec-
tion. Expert-designed features (e.g., [3, 4, 20, 22, 26, 30, 49])
include vectors describing imported libraries, library or API
function calls, network addresses contacted, number of system

calls, byte entropy, whether specific strings are present, etc.
Hand-crafting these features is time-consuming, but their use
in DNNs has comparable results to DNNs that learn directly
from raw bytes [3, 32, 36, 46]. In this paper, we only consider
DNNs that infer maliciousness directly from raw bytes.

MalConv [46] and AvastNet [32] are examples of DNN
architectures that use raw-bytes as input. These architectures,
used in many related works [18, 21, 36, 52], achieved 98.5%
and 98.6% test accuracies respectively in discriminating un-
seen executables [36].

Real-world malware detection consists of an ensemble of
detection mechanisms, not just including the static analysis
these DNNs perform [56]. Other analyses include dynamic
analyses of files to infer maliciousness based on their execu-
tion behavior. However, if an adversary is trying to evade this
detection, they will need to evade each of these components,
including static analysis, which often serves as the first line of
defense [56]. Hence, our work’s focus on mitigating evasion
attacks against static analysis remains critical.

2.2 Attacking DNNs

Some popular methods of fooling DNN classifiers use the
gradients of the input with respect to the classification loss
to perturb a benign input toward greater loss until the DNN
misclassifies the perturbed input [23,37]. This general method
succeeds in creating what is called an adversarial example: a
perturbed datapoint that the DNN classifies differently.

More formally, we define a perturbation set P(x) as some
neighborhood of a datapoint x in which all members are,
to a human, in the same class (e.g., perturbations such as
adding static or small rotations to an image or functionality
preserving transformations on a compiled binary as described
in Sec. 2.3). Given an otherwise accurate classifier f , it is
generally easy to find x′ ∈ P(x) where f (x) ̸= f (x′), i.e., the
classifier thinks x′ belongs to a different class than x.

The following optimization function describes optimal clas-
sifier parameters θ given a dataset of inputs X and labels Y :

min
θ

∑
x∈X ,y∈Y

L( f (x,θ),y) (1)

where L is the loss function. The following optimization
function then describes the adversaries’ goal when creating
an adversarial example x′ by searching the maximum possible
loss within a perturbation set P(x):

max
x′∈P(x)

L( f (x′,θ),y) (2)

Previously established attacks that use the classifier’s first-
order gradients and gradient ascent to directly approach high
loss regions include Fast Gradient Sign Method (FGSM) [23,
35] and Projected Gradient Descent (PGD) [37].



2.3 Attacking DNNs for Malware Detection

Crafting attacks against malware-detection DNNs includes
unique constraints on the allowable perturbation set P(x). In
the case that a DNN is using expert-designed features, prior
work crafting adversarial perturbations to these features [22]
must ensure the modifications are plausible. For example, the
file size could be tweaked to be larger, the presence of strings
can be changed, and an adversary could choose to import
libraries or make syscalls that are unnecessary. However, this
work focuses on creating adversarial examples by modifying
the raw bytes of compiled binaries.

Attacking DNNs That Use Raw-binaries In creating ad-
versarial examples out of executable binaries (i.e. in the prob-
lem space [44]), an attacker must first define what is an al-
lowable adversarial example in this domain. In both this work
and related work, it is presumed that an attacker will only
perturb the original binary in ways that preserve its original
behavior when executed [11, 12, 19, 33, 36]. If a single byte is
changed without taking careful account of all the other bytes,
the entire binary would likely be rendered useless.

The input space for binaries consists of a variable length
sequence of bytes, each with a value in [0,255]. For MalConv,
with an input size of 2MB, this corresponds to a feature space
of 2× 220 categorical features. We also cannot naïvely fol-
low the target model’s loss gradients to produce adversarial
examples, as we need to ensure that any transformations re-
sult in a valid binary. Prior work refers to this as the inverse
feature-mapping problem [44]. Previous research has over-
come these issues and created adversarial examples by modi-
fying or adding bytes to non-executable regions of binaries,
resulting in the attacks introduced by Kreuk et al. (referred to
as Kreuk attacks [33]), and other attacks [2, 19, 29, 53]. Other
work focused on modifying the portable executable (PE) struc-
ture [2,18,19], or by leveraging functionality preserving trans-
formations to the assembly code [36] such as In-Place Ran-
domization (IPR) [42] and Displacement (Disp) [31].

Kreuk Attacks Kreuk attacks leverage the structure of PE
files to modify or append bytes in non-executable areas [33].
To select the most evasive bytes, Kreuk uses FGSM [23, 35]
on the embedded representation of the binary to perturb the
embedding to increase the target model’s loss. Then, the per-
turbed embedding is mapped to the bytes that are closest to it
in Euclidean distance. Since changing any byte could affect
the gradient of another byte, Kreuk uses multiple iterations of
FGSM. This attack was shown to successfully transform 99%
of tested binaries to evade correct classification [33]. Later
work showed that Kreuk can be mitigated by masking out
non-executable bytes before the binary is classified [36]. Still,
an attacker could overcome this defense by obscuring which
bytes are executable.

IPR and Disp Attacks Using transformations developed for
code diversification [31, 42], prior work applied only those
code transformations that resulted in changes in the binary
embedding that had a positive cosine similarity with the tar-
get model’s pre-computed embedding loss gradient. While
this technique proved effective at creating evasive adversarial
examples, such attacks are computationally expensive [36].
Generally, this high computation cost comes from the sequen-
tial, scan-and-modify nature of the process. For each binary,
the attacks consider each function one at a time, generating
functionality-preserving transformations and keeping or gen-
erating more transformations based on the aforementioned
gradient cosine. For large binaries or binaries with complex
functions, this process can take very long (e.g., an average of
4424 seconds for IPR [36]). For more detail, see App. C.

Problem-Space Constraints In the context of the problem-
space constraints formalized by Pierazzi et al. [44], the avail-
able transformation for Kreuk attacks is byte addition at the
end of the file. For Disp attacks, the available transformations
include editing and adding bytes to displace instructions and
filling the resultant gaps with semantic nops. For both Kreuk
and Disp attacks, these byte additions must not affect the
functionality of the binary when executed. For both of these
attacks, constraints on plausibility and robustness to prepro-
cessing are not explicitly specified. However, prior work has
constrained these attacks by a specified budget, the percentage
by which the file size may increase [36]. For IPR attacks, the
available transformations are limited to editing bytes via four
functionality-preserving transformations. However, IPR is not
constrained by a budget, but instead only by the fact that the
transformations may not be able to change some bytes and
preserve the binary’s functionality.

2.4 Defending Raw-Binary Malware Detectors

While many evasion defenses have been explored in other
domains, defenses in the malware-detection space remain
sparse. For attacks that adversarially manipulate bytes in non-
executable parts of a binary [29, 33, 53], zeroing out all non-
executable bytes before classification significantly reduces
attack success while maintaining high benign accuracy [36].

Prior work also found that normalizing a binary using IPR
transformations to the lowest lexicographic representation
using an alphabet consisting of the 256 possible byte values
effectively defends against IPR [36]. However, such normal-
ization requires access to all transformations used to produce
a potentially adversarial binary. Furthermore, such normal-
ization is computationally expensive as it requires, like the
attack, disassembling the binary and applying many iterations
of transformations. Considering that this overhead would be
incurred at run time, prior to every classification attempt, this
defense may not be viable in practice.



For Disp, prior work found that removing the adversarial
changes would not work [36] because of the possible use of
opaque [16, 39] or evasive predicates [6], instead of semantic
nops, to fill in the gap left by displacement. Opaque predicates
are sets of instructions whose functionality is known to the
attacker (e.g., a branch condition that the attacker creates to
always return true) but is difficult for the defender to infer
statically, while evasive predicates are similar instructions that
add randomness but will almost always perform one action
known to the attacker (e.g., a branch condition that returns
true 99.9% of the time). A defender would find it difficult to
identify opaque and evasive predicates [36].

However, prior work did find that randomly masking a per-
centage of executable bytes in a binary before classification
does provide some robustness to IPR and Disp, but at a cost
to natural accuracy [36]. We implemented this defense and
found that, at 25% masking (as suggested in prior work), the
evasiveness of Disp attacks was reduced (86% −→ 65%), but
at a steep cost (96% −→ 56%) to the True Positive Rate (TPR)
at 0.1% False Positive Rate (FPR), which is a standard metric
for assessing the performance of malware detectors [3,32,36].

Given the weaknesses of current defenses in raw-binary
classification, we turn to adversarial training, a defense com-
monly used in other domains [23, 27, 28, 34, 37, 50, 60].

2.5 Adversarial Training
As we introduced in Sec. 2.2 and Sec. 2.3, adversaries can
generate adversarial examples by using the gradients of the
input with respect to the classification loss either directly [5,
7, 9, 23, 41, 55] or by ensuring positive cosine similarity [36].

A common defense against adversarial examples in the
image domain is adversarial training: training the DNN to
correctly classify the adversarial examples that are generated
to target the current version of the model, along with benign
training data [23, 37, 50, 60]. Adversarial training aims to find
parameters θ that minimizes a weighted sum of the model’s
loss for classifying benign examples and the model’s loss for
classifying adversarial examples:

min
θ

∑
x∈X ,y∈Y

λ∗ ( max
x′∈P(x)

L( f (x′,θ),y))+(1−λ)∗L( f (x,θ),y)

(3)
where λ ∈ [0,1] is a weighting parameter commonly set as
0.5 [23]. It has been shown that adversarial training sub-
stantially enhances DNN robustness to adversarial examples.
Early works in adversarial training focused on images with
the perturbation set as the ℓp ball on pixel RGB values [25,59].
The intuition is that by restricting the norm sufficiently, all
images within the perturbation set will, as perceived by a
person, be in the same class. These works solved Eqn. 2 by
using techniques such as FGSM and PGD [35].

However, these defense techniques rely on the availability
of explicit first-order gradients in the model and a continuous
input space where small perturbations are unlikely to produce

a human-perceptible difference. In malware classification, as
noted in Sec. 2.3, these assumptions are not applicable.

Adversarial training also requires creation of many adver-
sarial examples to train with. For this reason, adversarial train-
ing in the raw-binary classification domain has been too com-
putationally expensive. As such, previous attempts at adver-
sarial training for malware classifiers have been constrained
to classifiers and perturbations that operate on handcrafted
binary features [22, 57], not the raw binaries themselves. Our
research solves these technical challenges.

2.6 Threat Model
Following the standard threat modeling framework outlined
in prior work [8, 44], we outline our assumptions about the
attacker’s goals, knowledge, and capabilities. We assume the
attacker is trying to cause an integrity violation by causing a
malware classifier to incorrectly classify a piece of malware
as benign. The attacker has perfect knowledge of the mal-
ware classifier (whitebox), and can alter whichever bytes they
want in the input binary using known functionality-preserving
binary transformations (Disp, IPR, or Kreuk) [33, 36]. The
attacker cannot modify or influence the trained model in any
way except by changing the input.

Accordingly, all success scores in Sec. 4 are from whitebox
attacks executed in the problem space [44], where the attacks
are directly modifying the input binaries. The transformations
we consider [33, 36] only work on unpacked 32-bit PEs. For
this reason we also assume that the adversarial examples we
defend against fit these requirements.

Finally, we emphasize that most attacker constraints in our
threat model—such as the binaries being unpacked, 32-bit,
and disassembled—are due to the constraints of the state-
of-the-art attacks that our work endeavors to defend against.
In practical use, the DNNs we train are only used for static
analysis, and they could be paired with a good unpacker and
used in combination with other defenses. This threat model
mirrors the one used by the attacks we defend against [33,36],
lending credibility to the defenses we propose. As the general
method we use, adversarial training is used in many domains,
and we expect lessons from our investigation will also be
relevant to situations in which these constraints do not apply.

3 Technical Approach

In this section, we present our technical approach. We de-
scribe our scaling infrastructure (Sec. 3.1), dataset and models
(Sec. 3.2), and the methods to create the raw-binary adversar-
ial examples that we experiment with (Sec. 3.3).

3.1 Experimental Infrastructure
Even after several optimizations to speed up creating adver-
sarial examples (see Sec. 3.3), creating a single adversarial



VTFeed Train Val. Test

Benign 111,258 13,961 13,926
Attack Eligible Benign 31,421 3,866 3,855

Malicious 111,395 13,870 13,906
Attack Eligible Malicious 69,743 8,548 8,576

Table 1: VTFeed dataset with more attack eligible binaries.

example could take between 30 seconds and a few hours. Con-
sequently, a sequential training process could take months, as
each training batch requires multiple adversarial examples.
To make adversarial training practical, we built a distributed
system to create multiple adversarial examples in parallel via
multiple workers distributed among several servers. The sys-
tem is depicted in Fig. 6 in App. C. Each worker in the system
continuously checks for jobs, each consisting of a binary, pa-
rameters for creating an adversarial example, and information
for where to send it. Upon job arrival, the worker updates its
own version of the target model weights to the latest version.
Next, the worker generates the adversarial example according
to the parameters it received. On completion, the adversarial
binary is sent to a central training process that collects them
into batches and updates the target model weights. We used
over 140 workers distributed among thirteen servers. While
this system did not speed up individual attacks, the parallelism
decreased the time it takes to complete an adversarial training
epoch from several months to between one and ten days.

3.2 Dataset and Model

We used the VTFeed 32-bit Portable Executable (PE) dataset,
obtained from the authors of previous work [36], which con-
tains 278,316 binaries up to 5 MB in size, partitioned into
training, validation, and test sets, with roughly balanced num-
bers of malicious and benign binaries.

Prior work restricted binaries eligible for attack to have
a file size less than or equal to 512 KB [36]. We remove
this restriction to increase the number of binaries that can be
transformed. Otherwise, our requirements match prior work:
each binary must be an unpacked, 32-bit PE file that is clas-
sified correctly with high confidence by a standard malware
detector (MalConv) and is able to be disassembled by IDA
Pro [24]. In particular, we determine that a binary labeled as
malicious (resp. benign) is classified with high confidence if it
is classified as malicious with confidence higher (resp. lower)
than the 0.1% FPR (resp. 0.1% False Negative Rate (FNR))
threshold of the target classifier. Similar to prior work [36],
we select binaries correctly classified with high confidence
to ensure that the transformations we make to the binary are
the cause of misclassification. The sizes of different partitions
and the numbers of eligible binaries are shown in Table 1.

Prior work disassembled and transformed 200 binaries to

Accuracy TPR @
Train Val. Test 0.1% FPR

MalConv 99.97% 98.67% 98.53% 96.08%

Table 2: Performance of the original MalConv architecture
pre-trained on the VTFeed dataset (training partition) [36].

show the effectiveness of their attacks [36]. In contrast, we
disassembled 126,009 binaries across the training, validation,
and test groups of the VTFeed dataset, and transformed each
of them many times in order to adversarially train our models.

We adversarially trained raw-byte malware detectors based
on the MalConv [46] and AvastNet architectures (see App. B
for results on AvastNet). To ensure that any reduction in at-
tack success is due to our adversarial training and not due
to a change in dataset or model architecture, we started each
training process with the model from prior work pre-trained
on the VTFeed dataset used as a target for the state-of-the-art
attacks [36]. This model’s accuracy is shown in Table 2. Al-
though a newer version of the MalConv architecture has been
recently proposed [47], its primary difference from the model
we used is better memory efficiency.

3.3 Adversarial Examples for Raw-Binary
Malware Detectors

As mentioned in Sec. 2.3, adversarial examples in the raw-
binary domain have unique constraints because of the nature
of the input space (categorical raw bytes). We first describe
how we implement data augmentation using functionality-
preserving transformations (IPR and Disp). We then describe
adaptations of gradient-guided versions of IPR and Disp (pre-
viously demonstrated as state-of-the-art adversarial exam-
ples [36]) and the parameters we vary during adversarial
training to induce robustness while maintaining high TPR on
the original data. Finally, we describe our implementation of
Kreuk attacks and the Greedy perturbation.

Unguided Transformations In other domains, data aug-
mentation is often used to improve DNN robustness to com-
mon or expected perturbations [17, 51]. In the image domain,
augmentation could include random cropping, rotating, and
brightening. In essence, augmentation randomly applies re-
alistic perturbations that do not change the class to make the
model more robust to those perturbations. Thus, it is reason-
able to expect that, in the malware-detection domain, data aug-
mentation using the functionality preserving transformations
used by state-of-the-art adversarial examples would provide
more resilience to those adversarial examples. To investigate,
we train DNNs with binaries, with either IPR or Disp transfor-
mations applied to them randomly (i.e., unguided), using the
setup as described in Sec. 4.1. The only difference between



these transformations and the IPR and Disp attacks we seek
to defend against is that the attacks are guided and only ap-
ply the transformations that follow the targeted model’s loss
gradient. We execute each transformation up to 5 iterations (a
cap shown to reduce attack performance when using guided
transformations in other experiments). We then evaluate the
trained models as described in Sec. 4.1.

To simulate an “unguided” analog to Kreuk attacks, we
append randomly chosen bytes (not optimized to be evasive),
up to a certain budget, to the end of the binary and train
with them. The only difference between guided and unguided
Kreuk adversarial examples is that guided versions optimize
the appended bytes to be more evasive (see Sec. 2.3).

IPR and Disp Attacks As mentioned in Sec. 3.1, adversar-
ial training requires many adversarial examples. In prior work,
IPR attacks were time consuming [36], taking an average of
4,424 seconds to complete per binary. A full epoch of training
using our dataset requires 55K batches, each of four adversar-
ial examples. Cumulatively, these attacks would take 4,424
seconds × 4 adversarial examples × 55,000 batches ≈ 31
years. However, in prior work these attacks were given a cap
of 200 iterations to succeed. We can first reduce the time by
capping attacks to 1, 3, 5, or 10 iterations. We chose these
numbers since the earliest iterations are, by far, the most eva-
sive; most Disp attacks succeeded in a single iteration and
about a third of successful IPR attacks within 5 iterations [36].
We can then use our previously described parallelization tech-
niques to compute over 140 attacks at a time.

We also discovered that creating adversarial examples from
our dataset was taking longer than reported in prior work.
Investigation revealed this was because our binaries were up
to 5 MB in size, rather than the 512 KB in prior work. We
flagged attack instances that took much longer than average,
and identified corner cases responsible for attacks that took
days. By addressing several of these corner cases, and reduc-
ing unnecessary computation in the attack method, we sped
up IPR attacks (capped at 5 iterations) from an average of
2,116 to 132 seconds (16× faster) and Disp attacks (of up to
5 iterations) from an average of 233 to 63 seconds.

Finally, we discovered that data structures relied on by IPR
and Disp had duplicate references to the same executable
bytes in multiple objects. This occasionally led to small num-
bers of bytes being transformed more than once per iteration,
possibly breaking the functionality of some binaries. We ap-
plied a fix, and verified through evaluation attacks on the
original model that there was no noticeable decrease in attack
success from either this fix or our code optimizations.

Kreuk Attacks We implemented the end-of-file injection
version of the Kreuk attack (see Sec. 2.3), which inserts eva-
sive bytes in a new section, appended to the end of the file.
Matching our experiments with Disp, we limited the file-size
increase by a pre-defined percentage (1, 3, or 5%). Executing

Kreuk was faster than IPR and Disp attacks.1 Hence, we were
able to execute the FGSM embedding perturbation and byte
remapping process until the attack succeeded (as defined in
Sec. 4.1), until the deterministic iterative process cycled to
a previously found byte configuration (forming an infinite
loop), or a maximum of 200 iterations.

3.4 Greedy Perturbation

Inspired by the enhanced robustness against all three at-
tacks attained by Disp- and Kreuk-based training (Fig. 3d
and Fig. 3f), we hypothesized that the benefit stemmed from
training on examples containing bytes that had been explicitly
optimized to be evasive, as happens in Kreuk and Disp.

For example, Kreuk attacks, as described in Sec. 3.3, can
set multiple bytes to values identified as the most evasive,
while Disp can insert the most evasive combination of se-
mantic nop instructions. Both of these methods result in a
set of bytes that are explicitly optimized to have an outsized
effect on the binary’s classification. If we could efficiently
train a model to pay less attention to bytes that are optimized
to have an outsized effect, this model may be more robust
to Kreuk and Disp attacks. Moreover, with only this training
goal in mind, we could avoid the expensive constraint of only
creating training examples that perserve binary functionality.

We leveraged prior work from non-malware domains that
create adversarial examples for discrete spaces [61,62] to cre-
ate the Greedy perturbation for binaries. Like prior work [61],
we use Integrated Gradients (IG) [54] to find the most impor-
tant features (i.e., bytes) that most influence a given binary’s
classification (benign or malicious). IG requires a baseline
input, for which we used a binary with file size 0 (represented
to the DNN as a sample made up of all padding bytes). Also,
because IG provides an importance score for each channel
in each byte’s embedding (an 8-channel vector for MalConv),
we chose to estimate the importance of each byte by summing
its embedding channels’ scores. We then select the most im-
portant features (i.e., bytes) up to a given percentage of the file
(e.g., 1, 3, or 5%), and assign the most evasive value to the fea-
tures (found using FGSM on the embedding), following the
procedure outlined in prior work [62]. This process is similar
to the Kreuk attack, except that the Greedy perturbation—we
call it a perturbation because the result is not a well-formed
executable binary and so is not an attack—can change any
byte to any value, up to a certain percentage.

4 Evaluation

In this section, we report on the performance of models we ad-
versarially trained under different configurations (e.g., meth-
ods for generating adversarial examples), eventually showing

1Average of 1–5 seconds, depending on the attack’s file-size budget



how adversarial training can markedly limit the effectiveness
of Disp-, IPR-, and Kreuk-based attacks.

4.1 Evaluation Setup
This section first describes the adversarial training parameters
varied to produce robust models, followed by our method of
evaluating and contrasting these models.

Varying the File-Size Budget of Disp and Kreuk Attacks
In prior work, Disp attacks were the most successful, with
success rates increasing as the displacement budget increased
(i.e., the percent increase in file size allowed) [36]. In this
work, to specify if an attack uses non-default budgets, it will be
referred to as <attack>-<budget> (e.g., Disp-0.01). Otherwise,
Disp and Kreuk refers to attacks with all three budgets (0.01,
0.03, 0.05). These three budgets mirror those used in prior
work, where they were sufficient for nearly 100% of binaries
to evade detection [36].

These different budgets raise the question on whether ad-
versarial training with examples of lower budget will provide
protection from Disp or Kreuk attacks of a higher budget. To
answer this question, we train and compare three DNNs for
each attack (six total); one DNN trained on only low budget
versions of these attacks (i.e Disp-0.01 or Kreuk-0.01 adver-
sarial examples), one DNN trained with 0.01 and 0.03 budget
adversarial examples, and one with 0.01, 0.03, and 0.05 budget
adversarial examples. To keep the comparison fair, the Disp
training adversarial examples were all executed up to 3 itera-
tions. Kreuk attacks (training and evaluation) were executed
as discussed in Sec. 3.3. Like all other models, these trained
models were evaluated with Disp-0.01, Disp-0.03, Disp-0.05,
Kreuk-0.01, Kreuk-0.03, Kreuk-0.05, and IPR attacks.

Varying the Number of Attack Iterations In previous
work, it was found that when transforming a binary to evade
detection, the first several attack iterations (where an ‘itera-
tion’ is a single pass of attempted transformations through a
binary) often resulted in the largest changes in maliciousness.
In other words, while an attack may be given up to 200 itera-
tions to generate evasive samples, often the first 3–5 iterations
were sufficient, especially for Disp [36]. Therefore, one of
our modifications to the IPR and Disp attacks demonstrated
in prior work was to only run the adversarial example genera-
tion process for 1–10 iterations and use the resultant example
to train with, regardless of its success in evading the target
model. By capping the process at these lower iterations we
avoid the costly potential of spending 20–200 times as long
for only marginally more evasive adversarial examples.

To examine the tradeoff between faster example genera-
tion and adversarial robustness, we compare eight separate
training configurations: four with IPR adversarial examples
capped at 1, 3, 5, and 10 iterations and four with Disp adver-
sarial examples capped at 1, 3, 5, and 10 iterations. One of

these configurations, which uses Disp adversarial examples
to 3 iterations, was mentioned in the previous section about
varying Disp budgets, meaning that we are now considering
a total of 6+7 = 13 adversarial training configurations.

Varying the Number of Training Batches We train with
each of the previously mentioned 13 configurations up to 55K
batches (equal to one epoch of the training dataset) and take
checkpoints at 10K, 25K, and 55K batches for each train-
ing configuration. We capped our adversarial training at one
epoch because of the high time cost (discussed in Sec. 3.3)
and the diminishing marginal increase in robustness and natu-
ral TPR as training continued, which suggested further train-
ing would not provide more insight. We evaluate at 10K and
25K batches (∼20% and ∼50% of the training data) to ob-
serve early- and mid-training behavior, such as an increase in
robustness and decrease in natural accuracy. This results in
13×3 = 39 adversarially trained models that are then evalu-
ated by the suite of attacks used in prior work [33, 36].

Comparing Adversarially Trained Models In adversari-
ally training raw-binary malware detectors, we emulated prior
work in other domains as described in Sec. 2.5 [23]. We chose
a batch size of eight, with half the batch size consisting of the
original examples from the training partition of the VTFeed
dataset, and the other half being adversarial examples cre-
ated from sampled binaries from the portion of the training
partition that is eligible for attack.

To compare different configurations of adversarial train-
ing in our domain, we evaluate adversarially trained models
against Disp, IPR, and Kreuk attacks using the same 100 ma-
licious binaries used in prior work [36], making our results
directly comparable to the original, non-adversarially-trained,
model. As in prior work, these evaluation binaries are un-
seen by the model from the test partition of VTFeed, and are
all below a file size of 512 KB to ensure that a Disp attack
cannot evade a classifier by simply displacing the malicious
bytes outside of the input size of the classifier, which for prior
work was a smaller model (AvastNet) [36]. Also, in line with
prior work, we allow attacks to attempt evasion for up to 200
iterations and calculate the percentage of final adversarial ex-
amples that successfully reduce their maliciousness below the
0.1% FPR threshold for the target model (i.e., the threshold
at which the target model empirically misclassifies 0.1% of
benign binaries as malicious in the entire original test parti-
tion of the dataset). This maliciousness threshold is calculated
for each target model before attacks are executed. As these
attacks are non-deterministic and the results could be noisy,
we repeat the attacks 5 times to reduce noisiness of results.

We visualize these comparisons in plots showing the per-
centage of final adversarial examples that successfully evade
detection. (by getting below their respective target model’s
0.1% FPR threshold). Note that when Disp or Kreuk attack
success is a single percentage, or appears as a single line in a



Original

Unguided Attacks
Guided Attacks

0.0
0.2
0.4
0.6
0.8
1.0

At
ta

ck
 S

uc
ce

ss

Bg
t: 

0.
01

Bg
t: 

0.
03

Bg
t: 

0.
05

Disp Attacks / Disp Trained

Original

Unguided Attacks
Guided Attacks

Bg
t: 

0.
01

Bg
t: 

0.
03

Bg
t: 

0.
05

Kreuk Attacks / Kreuk Trained

Figure 1: Attack success rates for Disp and Kreuk attacks up
to 200 iterations where each group of three bars includes one
bar per attack budget ∈ {0.01,0.03,0.05}. This figure com-
pares the original model and models trained with unguided
Disp adversarial examples (up to 5 iterations with budgets
0.01, 0.03, and 0.05) or unguided Kreuk adversarial examples
(with a budget of 0.01).

plot, it refers to the mean success rate across all budgets eval-
uated {0.01,0.03,0.05}, whereas in barplots summarizing
Disp or Kreuk attack success, budgets are shown distinctively
in groups of three bars (e.g., Fig. 2).

Finally, we also measure how natural accuracy (on unmod-
ified binaries) is affected by different adversarial training
configurations. To this end, we test each adversarially trained
model original test set of VTFeed.

4.2 Unguided Augmentation

As described in Sec. 3.3, we wanted to emulate the equivalent
of data augmentation for this domain to see if it provided any
robustness to state-of-the-art adversarial attacks. We trained
with unguided Disp adversarial examples given up to 5 itera-
tions, using all Disp budgets, on a full epoch of the training
dataset (55K batches). We also trained another model with un-
guided Kreuk-0.01 adversarial examples described in Sec. 3.3.
We constrained these examples budget to 0.01 as that is what
gave us the best results for guided Kreuk training (Sec. 4.3).

Fig. 1 shows the attack success rate on these trained net-
works after unguided training compared to the original model,
and the same configuration using guided attacks. As we can
see, unguided Disp attacks do help some with robustness to
Disp attacks (90% −→ 78% success rate), but using guided
Disp attacks helps much more (90% −→ 13% success rate).
Similarly, training on unguided analogs of Kreuk-0.01 reduce
Kreuk attack success rate some (84% −→ 79%) but much less
than training on evasive Kreuk-0.01 attacks (84% −→ 30%).
Considering that we found guided Disp and Kreuk attacks
empirically only take up to 12-20% longer to create than their
unguided analogs, we conclude that using guided attacks is
the better option for adversarial training.

We found that unguided IPR attacks up to 5 iterations take
478 seconds to complete on average, imputing around 11 days
to complete an epoch of training. For this reason, we only
trained on 25K batches to see if there was any effect. Through
IPR attack evaluations, we found that 26% of IPR attacks

still succeeded, which is equal to the success rate against the
original model, implying no robustness gain from unguided
IPR attacks. Moreover, we found that guided IPR attacks (up
to 5 iterations) took much less time at an average of 132
seconds, nearly four times faster than unguided IPR attacks
(after our optimizations mentioned in Sec. 3.3). Similarly to
unguided Disp and Kreuk, we conclude that unguided IPR
attacks are simply too inefficient and ineffective at inducing
robustness to be suitable for adversarial training.

4.3 Disp and Kreuk Adversarial Training with
Varying Budgets

Our experiments show, for both Disp and Kreuk attacks, that
adversarially training solely with low budget attacks (0.01)
provides some robustness to higher budget (3-5x) attacks
(0.03, 0.05).

For Disp attacks, when we train on all budgets, the neu-
ral network is either no more or only slightly more robust to
Disp attacks for all evaluation budgets. This trend is shown
in Fig. 2 where the bar plots trained only on Disp attacks
with a budget of 0.01 (Low Budget) have similar robustness
compared to otherwise identical adversarial training configu-
rations that also train on adversarial examples with budgets
of 0.03 (Low+Mid Budget) and 0.05 (All Budgets).

Also, for Disp, the resulting TPR at a 0.1% FPR after 55K
batches of training for Low, Low+Mid, and All Disp Budgets
is 95.5%, 95.0%, and 95.0%, respectively. Interestingly, low
budget attacks have an empirical 0.5% improvement over
the other budgets, which may be due to the fact that these
low budget adversarial examples are the most similar to the
original non-adversarial examples trained on, and so training
results in less of a dramatic shift in data distribution.

This effect is more pronounced for Kreuk attacks, where
training with those higher budget Kreuk attacks degraded
natural accuracy (96% −→ 17% TPR at 0.1% FPR), which
made the 0.1% FPR attack success threshold for the resultant
model easier to achieve, increasing the success rate of attacks.
This is shown in Fig. 2, where the models trained only on
Kreuk attacks with a budget of 0.01 (Low) or 0.01 and 0.03
(Low+Mid) reduce Kreuk attack success rates of all budgets,
but training 0.01, 0.03, and 0.05 (All) results in increasing
Kreuk attack success rates. As a result, we use the model only
trained with Kreuk-0.01 (Low Budget) attacks to compare
with other models in the rest of the paper.

Similar to Disp attacks, we found that training on low bud-
get Kreuk attacks (0.01) provided some robustness to higher
budget attacks (0.03, 0.05). For this reason, the most notable
trend is that training with low budget attacks seems to give
nearly equal or better robustness to higher budget attacks of
the same class as training with those same higher budget
attacks. This hints that the protection of Disp or Kreuk adver-
sarial training cannot be easily defeated by simply increasing
the budget of Disp or Kreuk attacks.
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Figure 2: Comparing attack success rates for Disp and Kreuk
attacks up to 200 iterations between models trained with
varying budgets of Disp and Kreuk adversarial examples up
to 3 and 200 iterations, respectively. Each group of three bars
includes one bar per budget ∈ {0.01,0.03,0.05}.

4.4 IPR and Disp Adversarial Training with
More Attack Iterations

In almost every instance of IPR and Disp adversarial training,
DNNs became more robust to the attacks they were trained
on, resulting in the attack generating processes needing more
iterations to be able to successfully evade the strengthening
target network. Adversarial examples in earlier batches of
adversarial training were often successful in their first few
iterations, but later training adversarial examples (of both
Disp and IPR) targeting a now more robust model would
almost always take up to the capped amount of iterations
allowed for that particular adversarial training configuration.
This is visualized in Fig. 7 in App. C. Since the time taken to
generate an attack is roughly linearly dependent on how many
iterations of the attack are executed, allowing a larger cap in
iterations directly results in longer adversarial training times.

Disp Training with More Iterations Completing 1, 3, 5, or
10 iterations of Disp takes an average of 28, 45, 63, and 101
seconds respectively. However, as shown in Fig. 7, training
with a single Disp iteration achieves most of the robustness
benefit (90% −→ 30% Disp attack success rate) when com-
pared to training with 3 iterations (90% −→ 16%), 5 iterations
(90% −→ 13%), and 10 iterations (90% −→ 9%). This robust-
ness from 1 iteration is accomplished while taking less than a
third of the time as 10 iterations. Moreover, as visualized in
Fig. 3a, the marginal benefit of completing more iterations of
Disp quickly reduces, especially past 3 iterations. This trend
is supported by the observation that later iterations of both
IPR and Disp attacks are less effective at achieving evasion
than the initial iterations, so much time can be saved by only
training on attacks capped at lower numbers of iterations.

Disp-training’s robustness against IPR and Kreuk attacks
is visualized in Fig. 3d. Training with a single Disp iteration
reduces IPR attack success rates by 26%, but only reduces
Kreuk attack success rates by 6%. However, increasing the it-
erations executed of Disp training attacks from 1 to 10 results
in further reducing both IPR and Kreuk attack success rates
by at least another 20%. This suggests that the initial code
displacement operation executed by Disp may help increase
robustness to IPR, as it is made up of similar code manipu-
lation techniques. However, this displacement does not help
much against Kreuk attacks until extra bytes inserted by Disp
are optimized to be more evasive. For more details on how
Disp works, please see App. C.

For TPR at 0.1% FPR when varying iterations, at 55K
batches, the difference was not significant when considering
1, 3, 5, and 10 iterations with a TPR of 94.8%, 95.0%, 94.8%,
and 94.6%, respectively. For this reason, we conclude that
Disp training at different iterations does not seem to affect
TPR when training up to 55K batches (a full epoch).

IPR Training with More Iterations When we aggregate
the vulnerability of IPR-trained models to explore the effect of
increasing the iterations of IPR attacks trained on, we see that
a single iteration of IPR does provide more robustness to IPR
attacks (26% −→ 18% attack success). This is similar to the
robustness to IPR gained from training on a single iteration
of Disp attacks (26% −→ 19%). Increasing the number of IPR
iterations from 1 to 10 notably makes DNNs more robust to
IPR (18% −→ 7%). These trends are illustrated in Fig. 3b.

As shown in Fig. 3e, one iteration of IPR does little to make
DNNs more robust to Disp or Kreuk attacks. However, we do
see an extra 6% reduction in Disp attack success as DNNs
are trained on 10 iteration IPR attacks. This is likely because
IPR consists of four different transformations that compose
together given multiple iterations over a binary, creating com-
bination transformations not seen in one IPR iteration.

When considering how IPR training with more iterations
affects TPR at 0.1% FPR at 55K batches, we find that the
difference between 1, 3, 5, and 10 iterations is not significant
at 95.2%, 95.6%, 95.7%, and 95.2%, respectively.

4.5 Adversarial Training with More Batches
To measure how the number of adversarial examples trained
on affects robustness, we average our model evaluations at
10K, 25K, and 55K batches.

Disp Training with More Batches For Disp training, we
observe a trend similar to the one described in Sec. 4.4: train-
ing on just 10K batches results in the largest robustness gain.
This is shown in Fig. 3a. Training with 10K batches reduces
Disp attack success rate from 90% to 21%. Training to 55K
batches (i.e., 5.5× the work) further reduces Disp attack suc-
cess, but only to 14%, a comparatively small effect.
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Figure 3: Comparing attack success rates for Disp, IPR, and Kreuk attacks up to 200 iterations between models trained with
varying number of adversarial examples and training attack iterations. Training on these attacks substantially increases model
robustness to the same attack, as shown in Figs. 3a–3c. The downward trends in Fig. 3d and Fig. 3f show that training on Disp or
Kreuk attacks reduces model vulnerability to other attacks by a smaller amount. “{IPR, Disp, Kreuk} Mean” is the mean attack
success rate over multiple adversarially trained models (e.g., 1-, 3-, 5-, 10-iteration Disp-adversarially-trained models in Fig. 3d).

Similar trends hold on robustness to IPR and Kreuk attacks,
and are shown in Fig. 3d. Training on 5.5× more adversarial
examples decreases IPR attack success from 21% to 15%,
similar to the IPR success decrease after training on 10K
Disp batches (26%−→ 21%). The additional decrease in Kreuk
attack success from 5.5× more training is also small (72% −→
65%). This is in contrast to the larger robustness gains (against
IPR and Kreuk) from increasing the number of iterations of
Disp training attacks from 1 to 10 (Sec. 4.4).

However, the metric that seems most sensitive to the num-
ber of batches trained on is the natural TPR at 0.1% FPR. At
10K, 25K, and 55K batches, the mean TPR (averaged across
1, 3, 5, and 10 iterations) is 89.8%, 93.7%, 94.8%, respec-
tively. It could be difficult to justify the significant decrease
in TPR at 10K batches when compared to the TPR of the
original model of 96.1%, despite the significant increase in
adversarial robustness. For this reason, it seems training on
more adversarial batches may be necessary.

IPR Training with More Batches We coincidentally found
that training on only 10K batches of IPR gave the same IPR
robustness increase when compared to the original model as
training on 55K batches of Disp (26% −→ 15% IPR attack
success) and similar robustness as training on 55K batches
of Kreuk (26% −→ 16%). This is not surprising, as we would
expect training on IPR attacks would give more robustness to
IPR attacks. However, similar to training with Disp attacks
for Disp training, training on 5.5× more batches of IPR gives

only marginally more robustness to IPR attacks (15% −→ 10%
IPR attack success), as seen in Fig. 3b.

Fig. 3e illustrates that training with more than 10K batches
of IPR attacks does not increase robustness to Disp and Kreuk
attacks, indicating that any non-IPR robustness gained from
training on IPR attacks is gained early in training.

In regard to how IPR training with more batches effects
TPR, we observe a similar effect as in Disp-training, but less
dramatic changes: At 10K, 25K, and 55K batches, the mean
TPR (averaged across 1, 3, 5, 10 iterations) is 92.4%, 94.4%,
and 95.4%, respectively. When comparing same number of
batches, IPR training results in slightly higher TPR than Disp
training. We suspect this is likely because Disp attacks are far
more likely to result in a successful evasion, and therefore in
larger weight updates, especially in earlier batches of training.

Kreuk Training with More Batches Like Disp-training,
Kreuk-0.01-training gets most of its robustness gain to Kreuk
attacks early (within 10K batches) as shown in Fig. 3c. How-
ever, unlike the other attacks, this early high robustness gain
(and subsequent low gain for further batches) also holds when
evaluating with IPR and Disp attacks, as shown in Fig. 3f.
This could be because Kreuk attacks include the addition of
highly evasive bytes (Sec. 2.3), and learning to ignore clusters
of highly evasive bytes may not take as many examples to
learn compared to more complex IPR and Disp attacks.

However, Kreuk-0.01-training hurts TPR more than Disp-
and IPR-training. At 10K, 25K, and 55K batches, the TPR is



84.4%, 87.0%, and 90.1%, respectively. Training with higher
budget Kreuk attacks results in even lower TPR (Sec. 4.3).

4.6 Greedy Adversarial Training
Despite not creating viable binaries (Sec. 3.4), Fig. 3g shows
that training with Greedy perturbed examples results in re-
duced attack success for all three attacks. Disp, IPR, and
Kreuk attack success is reduced by 26%, 16%, and 36%, re-
spectively after 55K batches of training with a budget of 0.01
(1% of the file size). We tried training with higher budgets of
0.03 and 0.05, but this resulted in much lower natural accu-
racy, and actually made the attacks more successful, similar
to training with higher budgets of Kreuk attacks (Sec. 4.3).

However, even at a 0.01 budget, Greedy-training hurts TPR
more than using the attacks (96% −→ 86%). This is likely
because Greedy perturbations produce the largest distribution
change as they do not result in valid binaries.

4.7 IPR-Disp-Kreuk Adversarial Training
Finally, we wanted to see if training simultaneously on IPR,
Disp, and Kreuk-0.01 adversarial examples would result in
a model that is more robust to all three attacks. We trained
on 55K batches composed of adversarial examples gener-
ated evenly between IPR (up to 5 iterations), Disp (up to 5
iterations), and Kreuk-0.01 attacks. The average time to one
of these training attacks was 66 seconds. We evaluated the
model by executing IPR, Disp, and Kreuk attacks on it after
10K, 25K, and 55K batches, as is done for all adversarial
training runs in previous experiments.

Fig. 4 shows the success rate of these evaluation attacks,
compared with the performance of other adversarial training
methods. The attack success rate (after 55K batches) against
this combined-trained model from Disp (14%) and IPR (13%)
attacks are notably higher than the level observed when train-
ing on only, respectively, Disp (9%) or IPR (7%) attacks. In
contrast, the combined model’s vulnerability to Kreuk attacks
(21%) was lower than when we only trained with Kreuk-0.01
(30%) attacks. This supports two earlier findings: (1) that
DNNs learn to be robust to Kreuk with fewer batches than
IPR and Disp (Sec. 4.5), and (2) that DNNs gain robustness
to Kreuk from Disp-training (Sec. 4.5).

For natural TPR at 0.1% FPR, we find that training on
all attacks results in a lower TPR than training with Disp or
IPR, but higher than training on Kreuk. At 10K, 25K, and
55K batches, the TPR is 83.8%, 89.1%, and 91.2%, respec-
tively. This is likely because Kreuk-0.01 training attacks are
especially hurtful for TPR, as first noted in Sec. 4.3.

4.8 Results Summary
We summarize our results here. Also, Table 3 gives a visual
summary and Tables 4–7 (App. A) give a numeric summary.

Attack Low More robustness to α over LET by increasing:
(α) Effort # Batches Disp Iters. Disp Budget

Disp iv + iq + it + i
IPR it + it + it + iq
Kreuk it + iq + it + i

(a) Adversarial training with Disp.
Attack Low More robustness to α over LET by increasing:

(α) Effort # Batches IPR Iters.

Disp iq + i + iq
IPR it + i + iq
Kreuk i + i + i

(b) Adversarial training with IPR.
Attack Low More robustness to α over LET by increasing:

(α) Effort # Batches Kreuk Budget

Disp it + i + i
IPR it + iq + i
Kreuk iv + iq + i

(c) Adversarial training with Kreuk.
Attack Low More robustness to α over LET by increasing:

(α) Effort # Batches Greedy Budget

Disp it + i + i
IPR i + iq + i
Kreuk it + iq + i

(d) Adversarial training with Greedy.

Table 3: Robustness gain from Disp (a), IPR (b), Kreuk (c),
and Greedy (d) training to attack type α∈{IPR, Disp, Kreuk}.i= no gain, iq = small gain, it = moderate gain, and iv
= large gain. Low Effort values are detailed in App. A.

• It is important to ensure the transformations in Disp, IPR,
and Kreuk attacks are optimized to be highly evasive
instead of randomly chosen (Sec. 4.2).

• High-budget Disp and Kreuk attacks are likely to see
reduced success on lower budget adversarially trained
models, an encouraging finding for defending against
unseen larger-budget versions of these attacks (Sec. 4.3).

• Optimization of IPR and Disp adversarial examples to be
more evasive beyond one iteration helps DNNs become
more robust, but not dramatically (Sec. 4.4). For IPR
training, more iterations are valuable as combinations
of different IPR transformations can occur via multiple
iterations over a binary, evidenced by more pronounced
robustness to Disp attacks (90% −→ 76% in one case).

• Adversarial training with only 10K batches gains most of
the robustness benefits to IPR, Disp, and Kreuk attacks,
but natural TPR suffers early in training. Training on
more batches is important to increase the TPR closer to
the original model’s performance (Sec. 4.5).
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Figure 4: Attack success rates for Disp, IPR, and Kreuk attacks up to 200 iterations against different types of adversarial training.
IPR-Disp-Kreuk training represents a model trained with a combination of IPR (up to 5 iterations), Disp (up to 5 iterations), and
Kreuk attacks. Training with all three of these attacks induces near best-case robustness benefit to all attacks simultaneously.

• Combining all attacks in training can result in more
broadly robust models (Sec. 4.7). However, as shown in
Fig. 4a and Fig. 4b, our most robust models from Disp
and IPR attacks came from training solely on those same
attacks. Therefore, the better system may be an ensemble
of models trained on different attacks.

5 Discussion

In this section, we discuss lessons learned, useful features of
our work, limitations, and suggest future directions.

Generalizing Lessons Learned to Other Attacks Our re-
sults suggest that adversarial training is a promising approach
to defend against each attack we evaluated (Disp, IPR, and
Kreuk). More importantly, we showed that it is not necessary
to train on the highest-effort attacks to still gain substantial ro-
bustness to them. For example, training with 1- to 10-iteration
Disp and IPR severely reduced success rates for attacks of
up to 200 iterations (Sec. 4.4). Similarly, when considering
attacks that scale their effectiveness by adding more or fewer
evasive bytes (Kreuk and Disp), training on versions that mod-
ified only 1% of the binary increased robustness against at-
tacks that modified up to 5% of the binary (Sec. 4.3).

Additionally, we showed that training on some attacks can
increase robustness to other attacks that use similar tech-
niques, such as for Disp and Kreuk, which both optimize the
evasiveness of contiguous blocks of bytes. We observe this
cross-robustness even though Disp modifies binaries by in-
troducing only semantic nop instructions and Kreuk and Disp
modify different parts of the binary. This effect is especially
evident in Greedy-training (Sec. 4.6), where all attack success
rates are reduced (IPR, Disp, Kreuk by −16%, −26%, −36%,
respectively) without training on any of the attacks, and the
Greedy perturbation does not produce viable binaries. How-
ever, Greedy-training is the most harmful to natural TPR at

−11%, suggesting this method should not be preferred over
other adversarial training strategies.

Finally, most of our adversarially trained models gained
the majority of their robustness within the first 10K batches
of training (Sec. 4.5). This suggests that lengthy adversarial
training runs are not necessary to understand how robust a
model can be to a particular attack. However, we also found
that this early adversarial training harmed natural TPR, and
that training with more batches is important to recover accu-
racy on the original data (Sec. 4.5 and Table 7).

These trends all hold when we repeat experiments with
a different architecture (see App. B), and suggest that when
adversarially training in the malware-detection domain, it
is less important that each example trained on is the most
effective version of an attack, than it is to train on an attack
similar in approach to those we seek to defend against.

Also, to understand if VTFeed’s file size cap of 5 MB (dis-
cussed in Sec. 3.2) could have affected our results, we an-
alyzed another popular dataset, Ember2018, which was col-
lected by an antivirus company and whose constituent binaries
were not constrained to be under 5 MB in size [3]. We found
that 95% of binaries in that dataset were smaller than 5 MB,
indicating that VTFeed’s file size cap only excluded around
5% of binaries on collection. Furthermore, prior work found
that there was “no appreciable difference” in test accuracy
between a MalConv model trained on Ember2018 that trun-
cated files to only analyze the first 2 MB (MalConv’s input
size [46]) and a modified version of MalConv that did not
truncate larger files (and instead inferred over the entire bi-
nary) [47, Sec 5.2]. As processing larger binaries did not
affect the accuracy of MalConv, and because relatively few
files were excluded from VTFeed, we believe our results are
similarly unaffected by VTFeed’s exclusion of larger files.

Robustness to Other Binary Transformations To under-
stand if our adversarial training affected robustness to other
binary transformations, we used recent work on creating ad-



versarial examples from an ensemble of techniques [52]. We
evaluate how the combined training by IPR, Disp, and Kreuk
(Sec. 4.7) affects model vulnerability to these techniques, in-
cluding section renaming, section appending, section adding,
and checksum breaking. We modify prior work’s code [52]
to transform the same 100 malicious binaries used for evalua-
tion in Sec. 4, targeting both our adversarially trained model
and the original model. We find that our adversarially trained
model’s robust accuracy to this ensemble attack is an average
of 49% whereas the original model’s robust accuracy is an
average of 23%, showing that the adversarially trained model
is more robust to these unseen binary transformations. We
also note that, as reported in the original work [52], five of the
seven of these transformations occasionally rendered binaries
invalid, limiting their utility in practical attacks.

Benefits from Transforming a Larger Set of Binaries As
mentioned in Sec. 1 and Sec. 3.2, one of the challenges we
overcame was disassembling 126,009 binaries from VTFeed,
expanding the number of attackable binaries by over 500×
compared to prior work’s 200 binaries tested [36]. Doing so
carried two primary benefits. First, executing prior work’s
code [36] on a much larger set of binaries revealed bugs that
could lead transformations to break binary validity and corner
cases where the code became very slow. We fixed these issues
(Sec. 3.3), resulting in more correct and faster transformations.
We will release the updated code upon publication.

Also, the increased scale of transform-able binaries allowed
us to avoid overfitting the classifier’s adversarial robustness to
a small number of source binaries. For example, if we instead
only trained on many adversarial versions of a small number
of binaries, the classifier could memorize constant bytes (e.g.,
a function or set of bytes that none of the transformations
can change) and learn to correctly classify all ‘adversarial
examples’ just by recognizing those unchanging pieces from
the small amount of source binaries. By having a much larger
set of binaries to transform, we avoid this potential issue and
expose the detector to a larger pool of adversarial examples.

Limitations We note here some limitations of this work.
This work only trains and evaluates malware detection DNNs
that operate on static features, and cannot detect malicious
behavior only present at runtime, such as downloading a ma-
licious payload. We also assume the attacker’s perturbations
do not change the binary’s functionality and uses known ad-
versarial example generation techniques [33, 36, 52].

Our adversarial training transformed only unpacked bina-
ries that could be disassembled by IDA Pro, as mentioned in
Sec. 2.6, as this was a requirement for the attacks we consid-
ered [36]. However, DNNs are adept at detecting malicious
behavior even when the binary is packed, as shown in App. D.

Future Work An avenue for future work is to adversarially
train on 200 iteration IPR and Disp attacks, to understand
what a model’s robustness would be if the long computation
time were not an issue, and to fully understand the trade-
off made by training with lower iteration attacks as done in
this work. However, with current capabilities, this could take
several months or years to train (as calculated in Sec. 3.3).

Another area of improvement could be in having the bud-
get, as used in the Disp, Kreuk, and Greedy transformations,
be optimized instead of being a pre-defined value as in this
work. This could be useful in a different threat model that con-
sidered that the attacker may want to reduce the distribution
difference between their evasive binary and the original bi-
nary. Another reason to optimize this parameter could be that
minimizing this distribution difference could help preserve
benign accuracy during adversarial training. In that case, the
techniques discussed by Pintor et al. [45] could be leveraged.

6 Conclusion

This work showed that it is possible to defend against ad-
versarial examples in the raw-binary malware-detection do-
main via adversarial training. This was achieved via improve-
ments on multiple fronts of this previously impractical pro-
cess. Improvements includes speeding up adversarial example
creation by using fewer iterations, code optimization, paral-
lelization, and increasing the pool of attack-eligible binaries.
Together with our findings that training on binary transfor-
mations yields a tradeoff between time taken to adversari-
ally train a classifier and resultant TPR and robustness, our
results suggest that a TPR of 90–95% at 0.1% FPR and sepa-
rately trained best-case robustness to Disp (5% success rate),
IPR (6% success rate), and Kreuk (30% success rate) can be
achieved after 55K batches (one epoch) of training. Given
that malware detection exists in an adversarial environment,
this work represents an encouraging development and guide
for how to create more robust raw-binary malware classifiers
less susceptible to evasion attacks.
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A Quantitative Summary of Results

Tables 4–6 show the success of Disp, IPR, and Kreuk attacks
for the original baseline and how their success is affected by
varying different parameters of adversarial training. Table 7
shows the TPR at 0.1% FPR given these same variations.
These tables also show the progression of using a Low Effort
value and a High Effort value for the parameter being varied
in that row. For varying Disp and Kreuk budgets, a budget
of 0.01 is the Low Effort value, while training with all three
budgets of 0.01, 0.03, and 0.05 is the High Effort value. For
varying attack iteration cap, the Low / High Effort values are
1 iteration / 10 iterations. For varying batches, the Low / High
Effort values are 10K / 55K batches.

Metric original Low Effort High Effort
success success ∆ success ∆

Disp: unguided 0.90 0.78 -14%
Disp: budget 0.90 0.20 -78% 0.16 -82%
Disp: attack iters 0.90 0.30 -67% 0.10 -89%
Disp: batches 0.90 0.21 -76% 0.14 -85%
IPR: batches 0.90 0.81 -10% 0.81 -10%
IPR: attack iters 0.90 0.88 -3% 0.82 -9%
Kreuk: budget 0.90 0.67 -26% 0.94 5%
Kreuk: batches 0.90 0.69 -23% 0.66 -26%
Greedy: batches 0.90 0.68 -25% 0.67 -26%

Table 4: Change in Disp attack success when varying each
training parameter. The most robust configuration against
Disp attacks was training on 10-iter Disp attacks, for 55K
batches, with all budgets (90% −→ 5% success rate).

B Adversarial Training Results on AvastNet

To investigate the generality of the trends found in this work,
we repeated IPR and Disp-training on another architecture,
AvastNet [32]. The accuracy of this model pre-trained on
VTFeed is 99.89%, 98.59%, and 98.60% for the train, test,
and validation sets, respectively. The TPR at 0.1% FPR is
94.78% on the test set [36]. Results are shown in Fig. 5.

A notable difference is that all attacks (Disp, IPR, and
Kreuk) are more successful in attacking AvastNet than
MalConv. This may be due to AvastNet having a smaller input
space (512 KB) than MalConv (2 MB), allowing the attack’s

Metric original Low Effort High Effort
success success ∆ success ∆

Disp: unguided 0.26 0.28 7%
Disp: budget 0.26 0.22 -14% 0.20 -25%
Disp: attack iters 0.26 0.19 -26% 0.13 -50%
Disp: batches 0.26 0.21 -20% 0.15 -41%
IPR: batches 0.26 0.15 -40% 0.10 -62%
IPR: attack iters 0.26 0.18 -31% 0.07 -72%
Kreuk: budget 0.26 0.18 -30% 0.94 262%
Kreuk: batches 0.26 0.20 -23% 0.16 -39%
Greedy: batches 0.26 0.30 15% 0.22 -16%

Table 5: Change in IPR attack success when varying each
training parameter. The most robust configuration against
IPR attacks was training on 10 iteration IPR attacks, for 55K
batches (26% −→ 6% success rate).

Metric original Low Effort High Effort
success success ∆ success ∆

Disp: unguided 0.84 0.80 -4%
Disp: budget 0.84 0.64 -24% 0.63 -25%
Disp: attack iters 0.84 0.79 -6% 0.55 -34%
Disp: batches 0.84 0.72 -14% 0.65 -22%
IPR: batches 0.84 0.85 2% 0.83 -1%
IPR: attack iters 0.84 0.80 -4% 0.89 6%
Kreuk: budget 0.84 0.33 -60% 0.94 13%
Kreuk: batches 0.84 0.35 -58% 0.30 -64%
Greedy: batches 0.84 0.61 -27% 0.54 -36%

Table 6: Change in Kreuk attack success when varying each
training parameter. The most robust configuration against
Kreuk attacks was training on Kreuk-0.01 attacks for 55K
batches (84% −→ 30% success rate).

modifications to binaries to take a larger percent of the total
input space of AvastNet, which may give the modified bytes
more influence in determining the classification of the input.

Regardless, the trends observed in Sec. 4 based on experi-
ments on the MalConv architecture were also observed when
adversarially training AvastNet. Training on IPR or Disp at-
tacks reduces the attack success rate of the same attack the
most, while providing some more robustness to other attacks.
Disp-training provides slightly more robustness to Kreuk at-
tacks than IPR-training does, as can be seen by comparing
Fig. 5c and Fig. 5d. Due to time constraints and the large
amount of computation need to adversarially train a network
and evaluate its performance at 10K, 25K, and 55K batches
with all attacks, we did not experiment with a Kreuk-0.01-
trained AvastNet. However, given that the interaction between
IPR- and Disp-training and IPR, Disp, and Kreuk attacks on
AvastNet mirrored the behavior of the same experiments on
MalConv, we believe results for Kreuk-training would likely
continue to follow previously observed trends.
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Figure 5: Plots show results for AvastNet. Comparing attack success rates for Disp, IPR, and Kreuk attacks up to 200 iterations
between AvastNet models trained with varying number of adversarial examples and training attack iterations. Training on either
IPR or Disp attacks substantially increases model robustness to the same attack, as shown in Figs. 5a–5b. The downward trends
in Fig. 5c show that training on Disp attacks reduces model vulnerability to other attacks by a smaller amount.

Metric original Low Effort High Effort
TPR TPR ∆ TPR ∆

Disp: unguided 0.96 0.95 -1%
Disp: budget 0.96 0.94 -2% 0.94 -2%
Disp: attack iters 0.96 0.93 -3% 0.92 -4%
Disp: batches 0.96 0.90 -7% 0.95 -1%
IPR: batches 0.96 0.92 -4% 0.95 -1%
IPR: attack iters 0.96 0.94 -2% 0.94 -2%
Kreuk: budget 0.96 0.87 -9% 0.17 -82%
Kreuk: batches 0.96 0.84 -12% 0.90 -6%
Greedy: batches 0.96 0.76 -21% 0.86 -11%

Table 7: Change in model TPR at 0.1% FPR when changing
each training parameter.

C Implementation Details

Machine Learning Framework and Distributed System
We use the Tensorflow [1] and Keras [14] libraries to train,
evaluate, and store the DNN model checkpoints.

We use Docker [38] containers to execute workers across
multiple Linux-based servers2. These workers read and write
log files, using the pandas [40] library, to a Network File
System (NFS) server. We use Redis [48] to distribute and
deconflict jobs. The workers are coded in Python [58], as are
the scripts used to generate all adversarial examples (IPR,
Disp, and Kreuk) attacks. The workers use the CPU rather
than GPU for all computations due to resource availability.

The attack implementations built on attacks used by Lu-
cas et al. [36], which themselves built on code from other
work [31, 42]. We describe our improvements in Sec. 3.3.

For every binary to be transformed, the IPR and Disp attack

23 servers with 64 GB RAM and AMD Ryzen 9 3900Xs, ; 2 servers with
256 GB RAM and AMD Ryzen Threadripper PRO 3975WXs; a server with
64 GB RAM and AMD Opteron 6274s; a server with 3 TB RAM and Intel
Xeon E7-4850s; a server with 24 GB RAM and Intel i7-4770s; a server with
24 GB RAM and Intel i7-11700Ks; a server with 32 GB RAM and an Intel
i7-2600; and 3 servers with 16 GB RAM and an Intel i7-2600

Figure 6: Distributed system for adversarially training DNNs.

implementations use files outputted by IDA Pro [24] that
describe the control flow graph of the binary. The IPR, Disp,
and Kreuk attack implementations use the pefile [10] and
libdasm [43] Python libraries to parse compiled binaries.

IPR and Disp Attacks The attacks referred to as IPR and
Disp in this paper were created by prior work. We describe
them in more detail here for convenience, but for the most
detailed description please see the original paper [36].

Both IPR and Disp attacks are based on prior work in bi-
nary diversification [31,42], which consists of transformations
that modify the bytes, and the underlying instructions they
represent, in such a way that the functionality is unchanged.

IPR (In-Place Replacement) transformations [42] include:

• equiv: This transformation replaces instructions with
equivalent instructions. For example, the instruction add
eax, 0x18 can be replaced with sub eax, -0x18.

• reorder: This transformation reorders instructions that
do not rely on a specific order of operations. For example,



the instructions add eax, 0x1 −→ xor ebx, 0x2 can
be reordered to xor ebx, 0x2 −→ add eax, 0x1.

• preserv: When pushing register values to the stack to
preserve their values, the order they are pushed must
match the order in which they are restored, but is other-
wise arbitrary. The preserv transformation alters this
push-pop order considering this constraint.

• swap: This transformation swaps registers in a block of
instructions. For example, if eax is being used as a loop
counter and ebx holds an address, this transformation
may switch their roles in the block by replacing every
occurence of eax with ebx and vice versa.

To make these IPR transformations evade a target DNN
classifier, prior work added a mechanism that calculated, for
each atomic transformation (e.g., an equiv replacement of an
instruction), if the change in byte values would perturb the
targeted model’s embedding of the binary in a direction that
had a positive cosine similarity with the loss gradient of the
targeted classifier [36]. If so, the transformation was applied.
If not, the transformation was discarded.
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Figure 7: Number
of attack iterations
(smoothed over 100
batches) executed in
different adversarial
training runs. Red,
blue lines represent
IPR, Disp attacks, resp.
Attacks quickly take up
to their allowed iter cap,
slowing adv training.

The Disp (Displacement)
transformation works by mov-
ing (displacing) a block of in-
structions to another part of
the binary and connecting the
instruction flow via jmp in-
structions. This leaves an open
space in the original location
of the block, which is then
filled with semantic nop in-
structions. The semantic nop
instructions do not necessar-
ily need to be nop instructions,
but can be any instruction that
does not change the state of the
program. For example, seman-
tic nop instructions can be add
ebx, 0x0 or mov eax, eax.
Because of this flexibility, the
Disp attack can choose the se-
mantic nop instructions that
are most useful for evading cor-
rect classification by the cur-
rently targeted model.

Both IPR and Disp attacks are implemented as an iterative
process that considers and applies a transformation to each
function3 in a binary. We call one round of this process an
iteration. Over multiple iterations, a single function can be
transformed by multiple transformation types (e.g., equiv

3Function as defined by the IDA Pro disassembly, which may not corre-
spond to functions in the original source code.

and swap). Increasing the number of iterations can lead to
more evasive binaries, at the cost of more compute time.

As depicted in Fig. 7 and first mentioned in Sec. 4.4, at-
tacks executed to create binaries for adversarial training are
typically capped to a small number of iterations and execute
for that number of iterations, unlike attacks used to test a
trained classifier, which typically use a much larger iteration
cap and hence often find an evasive binary and stop iterat-
ing well before reaching the cap. Hence, the time it takes to
adversarially train a model is linearly dependent on the cap
multiplied by the number of adversarial examples desired.

D Dataset Details

The dataset we use for our experiments, VTFeed, was col-
lected and labeled by Lucas et al. [36]. We briefly describe
the collection and labeling next.

VTFeed consists of 278,316 binaries. Each binary is a 32-
bit Portable Executable (PE) file up to 5 MB in size, first
seen in 2020, and classified by either 0 or 40+ antiviruses
(AVs) as malware (as shown in the VirusTotal metadata for
the file). Collection consisted of filtering the VirusTotal [15]
feed for binaries that met these criteria, downloading them,
and labeling them as malicious or non-malicious based on
if they were categorized as malware by 40+ AVs or 0 AVs,
respectively. VTFeed includes both .dlls and .exes.
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Adware.Downloader
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Figure 8: Distribution of
malware descriptions for
VTFeed given by Mal-
warebytes. Most preva-
lent is Trojan.VirLock
at 25%.

The test set of VTFeed con-
tains 7,571 packed and 20,261
unpacked files. The TPR (at
0.1% FPR) of the pre-trained
MalConv model for packed
and unpacked files separately,
is 93.00% and 97.16%, re-
spectively. This shows that,
on average, binary packing
did not significantly degrade
trained DNN malware de-
tectors. The VTFeed dataset
contains 188,198 EXEs and
90,118 DLLs. The dataset was
not constrained to specific mal-
ware families. The most common malware families reported
by AVs after classifying VTFeed binaries were: Virlock,
Dharma, Upatre, Coinminer, GandCrab, and Kryptik. A
distribution of malware descriptions given by Malwarebytes
is shown in Fig. 8.

The VirusTotal feed gives real-time access to the files being
uploaded for analysis by VirusTotal, and as such is a good rep-
resentation for the kind of files that would likely be analyzed
by the static malware detectors this work considers.
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